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Removing ROP Gadgets from OpenBSD

Todd Mortimer
mortimer@openbsd.org

Abstract

Return Oriented Programming (ROP) is a common exploita-
tion technique that reuses existing code fragments (gadgets)
to construct shellcode in a compromised program. Recent
changes in OpenBSD’s compiler have started to reduce the
number of gadgets in x86 and arm64 binaries, with the aim of
making ROP exploitation more difficult or impossible. This
paper will cover how ROP gadgets emerge from legitimate
code, how OpenBSD’s compiler removes these gadgets, and
the effects on performance, code size, and ROP tool capabil-
ities. We find that it is possible to meaningfully reduce the
number of ROP gadgets in programs, and to effectively hinder
ROP tool capabilities.

1 Background

Return oriented programming (ROP) [5] is an exploitation
technique that uses fragments of existing programs in unin-
tended ways to effect control over a compromised process. In
contrast to traditional shellcode injection, ROP attacks inject
a series of return addresses - a ROP Chain - into memory
and which, when execution returns to the first address in the
chain, cause execution to iterate through a series of small code
fragments which have the same effect as traditional shellcode.
ROP is a powerful technique in environments which disable
simultaneous writable and executable memory (W⊕X), since
it does not rely on injecting executable code into program
memory, but instead relies only on program fragments that
already exist. These program fragments are called gadgets,
and each gadget consists of a (typically small) sequence of
instructions followed by a return. On aligned architectures,
these returns are part of the intended instruction stream that
make up the program, but on unaligned architectures such
as x86, these returns can also emerge from jumping into the
instruction stream at unintended offsets and causing the exist-
ing code to be interpreted differently from what was intended.
ROP techniques have been used in attacks on real world sys-

tems, including recent attacks exploiting CVE-2018-57671,
CVE-2018-74452 and CVE-2018-16865/63.

Numerous techniques have been proposed to mitigate
against ROP exploits, including return address verification
techniques [2] and control flow verification [1] which aim to
prevent control flow being redirected towards a ROP chain.
Attempts have also been made to attempt to remove or render
unusable ROP gadgets themselves [4]. This paper describes
ROP exploit mitigations in OpenBSD which are motivated by
gadget reduction and removal, though some mitigations also
verify return control flow through return address verification.

In order to mount a successful ROP attack against a vulner-
able binary, the attacker must first catalogue all of the gadgets
available in a given binary, then identify a sequence of gad-
gets which will result in their desired effect. This process
of scanning binaries for gadgets and then constructing ROP
chains which have a desired outcome is somewhat tedious and
error prone, so numerous tools exist to make this easy, such
as ROPGadget4, ropper5, angrop6, or pwntools7. In this paper
we will rely on the output from one of these tools, ROPGad-
get, to measure our effectiveness. Specifically, we will use
the number of unique gadgets found by this tool to measure
the effectiveness of gadget removal in the OpenBSD kernel
and libc, which we have chosen because they are large and
diverse binary objects, and are popular exploitation targets.
ROPGadget also includes an option to generate a ROP chain
that results in an exploited program executing a command
shell. Obtaining a command shell is a common exploitation
goal, since once an attacker has a command shell they can
execute arbitrary other commands on the compromised sys-
tem. We will use this feature to estimate the effectiveness
of our efforts to impede mounting successful ROP attacks

1https://www.fidusinfosec.com/remote-code-execution-cve-2018-5767/
2https://www.secureauth.com/labs/advisories/mikrotik-routeros-smb-

buffer-overflow
3https://www.openwall.com/lists/oss-security/2019/01/09/3
4https://github.com/JonathanSalwan/ROPgadget
5https://github.com/sashs/ropper
6https://github.com/salls/angrop
7http://docs.pwntools.com/en/stable/
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against OpenBSD binaries. The output from the ROPGadget
ropchain option is shown in Figure 1, and illustrates several
important concepts in ROP attacks. First, the program scans
the given binary and identifies all unique gadgets present -
this output is shown first. Next, in order to successfully take
control of the program and spawn a command shell, gadgets
of certain classes must be found. These gadgets are listed
after each [+] symbol, and show the address of the gadget and
the instructions that will be executed when the program jumps
to that address. The first class of gadget is a write-what-where
gadget, which allows values to be moved between registers
and memory locations. Next, a gadget must be found which
can set the syscall number required for the exec system call
- notice that these gadgets manipulate the value of the RAX
register. The third class of gadget needed sets the arguments
to the exec syscall, and these gadgets manipulate the RDI
and RSI registers to set the arguments to the exec system
call to be /bin/sh. Finally, the last gadget type is the syscall
gadget, which will execute the system call set up by the other
gadgets. After identifying suitable gadgets in each class, ROP-
Gadget will construct a ROP chain that will direct program
flow through these gadgets in such a way to cause the pro-
gram to execute a command shell. ROPGadget outputs the
ROP chain as a python program which can easily be inserted
into whatever exploit tool is being developed to target a spe-
cific program or binary. This level of ease and accessibility
is typical of ROP tooling, and illustrates the ease with which
ROP attacks can be mounted once a suitable vulnerability is
identified which takes control of program execution.

We can see from this output that a variety of gadgets are
required in order to mount successful ROP attacks on binaries,
and that there are a large number of unique gadgets available
in a typical binary. These observations motivate our approach
of reducing the number of gadgets available in a typical binary
- if we can reduce the number of unique gadgets enough
then the remaining gadgets will be insufficient to mount a
successful attack. In particular, if we can remove all gadgets
of a particular class, then it may become impossible to mount
some kinds of attacks against OpenBSD binaries, such as the
exec(“/bin/sh”) attack shown in Figure 1. We therefore do
not need to reduce the number of gadgets in a binary to zero
in order to foil ROP attacks, we only need to remove enough
gadgets, or enough types of gadgets, so that an attacker cannot
cobble together a viable ROP chain.

2 Removing Gadgets

ROP gadgets depend on a sequence of instructions terminat-
ing on a return instruction. On aligned architectures, such
as arm64, these return instructions are part of the intended
instruction stream and are part of usual function epilogues.
On unaligned architectures, such as x86/amd64, there are ad-
ditional return instructions which arise when jumping into the
instruction stream at offsets other than those corresponding

to the intended stream of instructions. These polymorphic
gadgets terminate on return instructions that are intended to
be part of constants, multibyte instructions, or other artifacts
in programs other than real return instructions. In this section,
we discuss each kind of gadget and our techniques to remove
or reduce them in compiled binaries.

2.1 Aligned Gadgets

Aligned gadgets terminate on intended return instructions as
part of normal function epilogues. On aligned architectures
these gadgets comprise some or all of the usual process of
restoring register state before a function returns. On unaligned
architectures these gadgets can also have entirely different
effects depending on the offset where the gadget begins in the
instruction stream. Examples of aligned gadgets on amd64
and arm64 are shown in Figures 2 and 3. Both of these exam-
ples are found in function epilogues, and we show both the
bytes that make up the instruction and the instruction disas-
sembly. Throughout this paper we will show both the bytes in
the compiled binary and the disassembled instructions, since
the interpretation of the bytes making up a compiled program
is central to the concept of return oriented programming. For
readers unaccustomed to inspecting program disassembly, it
may be fruitful to use objdump(1) to disassemble and inspect
various programs and libraries on their systems.

Figure 2: Aligned gadget on amd64
Bytes Disassembly

0f b6 c0 movzbl %al, %eax
5d popq %rbp
c3 retq

Figure 3: Aligned gadget on arm64
Bytes Disassembly

fe 03 05 aa mov x30, x5
c0 03 5f d6 ret

Since aligned gadgets terminate on function return instruc-
tions which are required for correct program operation, our
strategy to prevent these return instructions being used in
ROP gadgets will be to make them difficult to use outside
of normal program flow. To this end, we insert interrupt in-
structions before the returns and then add instrumentation
to the function that will allow normal program flow to jump
over the interrupts. Program flow that starts at an offset other
than the normal function entry point will fail to jump over the
interrupts and abort.
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Figure 1: ROPGadget ropchain against OpenBSD 6.3 libc

$ ROPgadget . py −−r o p c h a i n −−b i n a r y OpenBSD−6 .3 / l i b c . so . 9 2 . 3

Unique g a d g e t s found : 8453
ROP c h a i n g e n e r a t i o n
===========================================================
− Step 1 −− Write−what−where g a d g e t s

[ + ] Gadget found : 0 x1f532 mov qword p t r [ r s i ] , r a x ; pop rbp ; r e t
[ + ] Gadget found : 0 x3b62e pop r a x ; r e t

− Step 2 −− I n i t s y s c a l l number g a d g e t s
[ + ] Gadget found : 0 x fa0 xor rax , r a x ; r e t
[ + ] Gadget found : 0 x38fe i n c r a x ; r e t

− Step 3 −− I n i t s y s c a l l a rgumen t s g a d g e t s
[ + ] Gadget found : 0 x4cd pop r d i ; pop rbp ; r e t
[ + ] Gadget found : 0 x905ee pop r s i ; r e t

− Step 4 −− S y s c a l l g a d g e t
[ + ] Gadget found : 0 x9c8 s y s c a l l

− Step 5 −− B u i l d t h e ROP c h a i n
p = ’ ’
p += pack ( ’ <Q’ , 0 x00000000000905ee ) # pop r s i ; r e t
p += pack ( ’ <Q’ , 0 x00000000002cd000 ) # @ . d a t a
p += pack ( ’ <Q’ , 0 x000000000003b62e ) # pop r a x ; r e t
p += ’ / b i n / / sh ’
p += pack ( ’ <Q’ , 0 x000000000001f532 ) # mov qword p t r [ r s i ] , r a x ; pop rbp ; r e t
p += pack ( ’ <Q’ , 0 x4141414141414141 ) # padd ing
p += pack ( ’ <Q’ , 0 x00000000000905ee ) # pop r s i ; r e t
[ e l i d e d . . . ]
p += pack ( ’ <Q’ , 0 x00000000000038fe ) # i n c r a x ; r e t
p += pack ( ’ <Q’ , 0 x00000000000009c8 ) # s y s c a l l

RETGUARD

RETGUARD is a mechanism that adds instrumentation to the
prologue and epilogue of each function that terminates in a
return instruction. In the prologue, we combine the function
return address with a random cookie and store the resulting
RETGUARD cookie in the stack frame. In the epilogue we
verify that the return address is the same one we recorded on
function entry. If the addresses match, then we jump over a
sequence of interrupt instructions which precede the return.
If not, then the program falls through into the interrupt in-
structions and aborts. By inserting interrupts before the return,
we mitigate against gadgets which begin shortly before the
return, and larger gadgets must pass the verification process
in order to jump over the interrupts and reach the return.

The random cookies used in RETGUARD are drawn from
the OpenBSD .openbsd.randomdata section. This special
read-only ELF section is pre-filled with random byte values at
load time by the kernel and dynamic loader (ld.so) whenever
executables or shared library objects are loaded into mem-
ory. Programs needing high quality random data can allocate
memory in this section and be guaranteed that the memory
will be randomized when program execution begins. RET-
GUARD allocates one 8 byte random cookie per function, so
the RETGUARD cookie is unique per function and per call.

amd64

The RETGUARD prologue and epilogue for amd64 are shown
in Figures 4 and 5. In the prologue, we fetch the function’s
random cookie and combine it with the return address, then
store the resulting RETGUARD cookie in the stack frame.
The RETGUARD cookie is calculated before frame setup, and
the cookie is stored in the frame along with any other callee
saved registers. Unlike the stack protector cookie, the location
of the retguard cookie in the stack frame is not important, so
it can be stored anywhere in the frame.

The epilogue retrieves the retguard cookie from the frame,
combines it with the address we are about to return to, and
compares the result with the function’s random cookie. If
the values match, then the jump is taken over the interrupt
instructions and the function returns normally. Otherwise, the
program will fall through to the interrupts and the program
will abort. A representative program epilogue is shown in
Figure 5

By disassembling the epilogue from each offset leading
up to the return, we can verify that for each possible offset
the program must either pass the random cookie check or
terminate on an interrupt. Since each disassembled ’gadget’
contains an interrupt instruction, gadget tooling like ROP-
Gadget will recognize the instruction sequence as unusable,
with the consequent effect that these gadgets are effectively
removed from the compiled binary. In the future, should ROP
tooling become clever enough to recognize the jump before
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Figure 4: RETGUARD Prologue (amd64)
Instruction Description

mov off(%rip),%r11 load random cookie

xor (%rsp),%r11 xor return addr

push %rbp
mov %rsp,%rbp
push %r11 save retguard cookie

Figure 5: RETGUARD Epilogue (amd64)
Instruction Description

pop %r11 load retguard cookie

pop %rbp
xor (%rsp),%r11 xor return addr

cmp off(%rip),%r11 compare random cookie

je 2 jump if equal

int3 interrupt

int3 interrupt

retq

the interrupts, then the random cookie comparison will still
need to be passed before the jump can be taken. In this way,
RETGUARD effectively removes aligned gadgets from pro-
grams.

arm64

For arm64, the function prologue and epilogue are similar,
and are shown in Figures 6 and 7. The difference between the
amd64 and arm64 versions is that because arm64 is an aligned
architecture, we do not need to perform the disassembly exer-
cise for each offset leading up to the return instruction - the
only instructions available as ROP gadgets are the instructions
as they were intended.

Again, we see that each possible gadget in the function
epilogue contains an interrupt, and will therefore be ignored
by ROP gadget tooling. Should an attacker attempt to use
these gadgets anyway, then the return address verification step
will still need to be passed in order to bypass the interrupt.
Again, the RETGUARD instrumentation effectively removes
these gadgets from the binary.

Stack Protection

Finally, although the intent of RETGUARD is to make it dif-
ficult to use function return instructions as ROP gadgets, the
return address verification mechanism in the epilogue has
the same effect as enforcing control flow on the program. If
the return address is modified on the stack, then the program
will abort. This is the same effect as the existing stack canary,
which is placed on the stack immediately before the return
address. RETGUARD improves upon the stack canary mech-
anism by allocating one random cookie per function instead

Figure 6: RETGUARD Prologue (arm64)
Instruction Description

adrp x15, #pageoff load random cookie

ldr x15, [x15, #off] load random cookie

eor x15, x15, x30 xor return addr

str x15, [sp, #-16]! save retguard cookie

Figure 7: RETGUARD Epilogue (arm64)
Instruction Description

ldr x15, [sp], #16 load retguard cookie

adrp x9, #pageoff load random cookie

ldr x9, [x9, #off] load random cookie

eor x15, x15, x30 xor return addr

subs x15, x15, x9 compare random cookie

cbz x15, #8 jump if equal

brk #0x1 interrupt

ret

of one cookie per object file, and directly verifying the return
address instead of verifying the stack canary and inferring
the integrity of the return address. In this way, RETGUARD
provides a stronger stack protection mechanism than simple
stack canaries.

2.2 Polymorphic Gadgets
Polymorphic gadgets terminate on unintended return instruc-
tions. These gadgets do not exist on aligned architectures,
but on x86, there are four bytes which decode to a return [3]:
c2, c3, ca, and cb. These are shown in Table 1 along with
their meanings. The four kinds of return are divided between
near (c2, c3) and far (ca, cb) returns, and returns that pop
additional data off the stack (c2, ca) or not (c3, cb). The most
common kind of return found in ordinary programs is the c3
return, which is also the easiest kind to employ in ROP gad-
gets since it is a near return that does not change the current
code segment or adjust the stack.

Any time any of these bytes occur in the instruction stream,
they represent a potential gadget. These bytes occur in three
main parts of programs:

Instruction Encoding Instructions that encode with a return

Table 1: x86 Return Instructions
Byte Meaning

c2 imm16
Near return to calling procedure and pop

imm16 bytes from stack.

c3 Near return to calling procedure.

ca imm16
Far return to calling procedure and pop

imm16 bytes from stack.

cb Far return to calling procedure.
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Table 2: ModR/M Byte Encodings

ModR/M
Byte

1st Operand 2nd Operand

c2 rax, r8 rdx, r10

c3 rax, r8 rbx, r11

ca rcx, r9 rdx, r10

cb rcx, r9 rbx, r11

Table 3: SIB Byte Encodings
SIB Byte Base Index Scale

c2 rdx, r10 rax, r8 8

c3 rbx, r11 rax, r8 8

ca rdx, r10 rcx, r9 8

cb rbx, r11 rcx, r9 8

byte as part of the instruction, either as part of the instruc-
tion directly, or through the encoding of the ModR/M or
SIB byte.

Constants Instructions which use a numeric constant con-
taining a return byte, such as loading a literal value onto
a register. Since OpenBSD is compiled fully PIE (po-
sition independent executable), these are always value
literals, since there are no address constants.

Relocation Addresses Instructions which reference a value
located in another program object such as a shared library
have the locations of these objects filled in at runtime.
Sometimes the location value includes a return byte.

Examples of gadgets arising from each of these program
parts are shown in Figure 8, which shows for each source
of polymorphic gadgets the bytes making up the intended
instruction(s), what the intended instruction was, and what
the gadget instructions are. In each example, the gadget bytes
are highlighted for easy identification. In the first example,
the unintended return instruction comes from a ModR/M byte
encoding the eax / ebx register pair. In the second example,
the constant value loaded into rdi contains a c3 byte. In the
last example, the address of the bcmp function happens to
encode with a c3 byte.

In the case of instruction encodings, the majority of unin-
tended return instructions originate from the ModR/M or SIB
byte of instructions that operate on one or two registers. For
some combinations of registers the ModR/M or SIB byte will
be encoded as a c2, c3, ca or cb byte, and therefore constitute
a possible return. These register combinations are shown in
Tables 2 and 3, where the identified registers can also be ref-
erenced by their 8 (low), 16, 32 or 64 bit aliases (eg. al, ax,
eax, rax).

We pursue two strategies for removing polymorphic gad-
gets from binaries. We first attempt to transform instructions

containing return bytes into equivalent instructions that do
not contain any. If this is not possible, either because there
is no equivalent instruction, or because it is not safe to trans-
form, then we prepend the instruction with an alignment sled.
This alignment sled is a jump instruction followed by 2-9
interrupt instructions. The intent of the alignment sled is to
limit the offsets from which a gadget may start and which will
terminate on the unintended return byte. By inserting several
interrupt instructions before the problematic instruction, we
increase the likelihood that any execution starting from an
unintended offset in the instruction stream will execute an
interrupt and abort.

We implemented two approaches for transforming prob-
lematic instructions into safe alternatives: Alternate register
selection; and Alternate code generation. These strategies are
detailed below.

Alternate Register Selection

A survey of ROP gadgets present in the OpenBSD amd64
kernel revealed that many polymorphic gadgets result from
c3 bytes which encode operations on the B series of regis-
ters (rbx, ebx, bx, bl). We can therefore reduce the number
of gadgets by simply reducing the use of these registers. We
have modified the register allocation preference in the clang
compiler to place these registers after each of the other gen-
eral purpose registers, so that the B registers are assigned
last. As a consequence, many functions which do not need
all of the available general purpose registers will never use
the B registers, and will therefore not be at risk of encoding
unintended c3 bytes when operating on those registers.

This change is straightforward to implement - we simply
change a list:

Before RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, RBX,
R14, R15, R12, R13, RBP

After RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, R14,
R15, R12, R13, RBX, RBP

This change is entirely free. There is no additional compile
time cost, and no additional runtime cost. Despite being free
and trivial, we shall see in Section 3 that it has a measurable
effect on the number of unique gadgets present in OpenBSD
binaries.

Alternate Code Generation

For instructions which do use the B series registers or other
pairs of registers which can encode a return byte (as per Ta-
bles 2 and 3), or which may use a problematic constant, we
have modified the clang compiler to inspect each instruction
before it is emitted and attempt to exchange these problematic
instruction for safe alternatives. This is the X86FixupGadgets
pass, which identifies potential ROP gadgets and attempts to
mitigate against them. An initial implementation of this pass
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Figure 8: Types of polymorphic gadgets
Gadget Source Bytes Intended Instruction Gadget Instruction

Instruction Encoding 83 e3 01 01 c3 andl $1, %ebx
addl %eax, %ebx

add %eax, (%rcx)
ret

Constant 48 c7 c7 a5 c3 84 81 movq 0x8184c3a5, %rdi movsl (%rsi), (%rdi)
ret

Relocation Address e8 95 c3 3e 00 callq 4113301 <bcmp> xchgl %ebp, %eax
ret

transformed a specific subset of instructions that encoded
to include c3 return bytes, and was included in OpenBSD
6.4. A more general version of this pass is being prepared
for OpenBSD 6.5 that targets all four kinds of return bytes
and problematic constants. This pass uses two general strate-
gies for gadget reduction: direct instruction modification and
alignment sled padding.

For instructions which include a return byte because of
their particular register operand encoding, we observe that the
same instruction with the register operands reversed does not
result in a return byte in the emitted instruction. For example,
an instruction encoding a ModR/M byte using rax as the first
operand and rbx as the second operand will emit a ModR/M
byte of c3, according to Table 2, but if the operands were
reversed, so the first operand was rbx and the second was rax,
the ModR/M byte would not encode any of the four return
bytes (it would instead encode to d8). This relationship holds
for all of the problematic register pairs identified in Tables
2 and 3 - we can always reverse the operands and emit a
safe instruction. Similarly, for instructions which use only a
single register operand, we can safely substitute the equivalent
A series register. Our strategy for fixing instructions which
encode unintended return bytes through the ModR/M or SIB
bytes is therefore to insert an exchange instruction before
and after the problematic instruction which swaps the values
of the operand registers, and then modify the instruction to
reverse the order of the operands. The effect is to perform
the exact same operation as the intended instruction, but do it
with the operands reversed. The resulting instructions are free
of unintended return bytes and cannot terminate ROP gadgets.
An example of this transformation is shown in Figure 9, which
shows the original instruction bytes and intended instruction
and the transformed bytes and instructions. Notice that the
transformed instructions do not contain any return bytes.

For instructions which cannot be modified by exchang-
ing their operands, or which encode constants that include
a problematic byte, we insert an alignment sled before the
instruction in order to interfere with gadgets which terminate
on the unintended return byte. There are many reasons why
we may not be able to reverse the operands used in a given
instruction, such as instances when one of the registers is not a
general purpose register (such as the xmm registers), the byte
value is non-optional (such as the VMRESUME instruction,

which encodes as ’0f 01 c3’), the instruction is a branch or
other instruction that changes control flow, or the instruction
implicitly uses a register that is also one of the operands. The
alignment sled is a jump instruction followed by a series of
2-9 interrupt instructions. The effect of the interrupt instruc-
tions is to cause unaligned access to the instruction stream to
result in the program aborting.

Figure 10 shows the effect of inserting an alignment sled
before a problematic instruction that encodes a constant with
a return byte. By placing the alignment sled before the in-
struction, any gadgets which would have used the c3 byte as a
return are constrained to avoid executing any of the interrupt
instructions which precede it, with the result that unaligned
execution of the instruction stream is impractical, and the c3
byte cannot be used as a return and therefore cannot be used
in a ROP gadget.

3 Results

OpenBSD has applied these mitigations to the amd64 and
arm64 platforms. RETGUARD has been applied to both plat-
forms for the 6.4 release, and mitigations targeting polymor-
phic gadgets have been applied on the amd64 platform over
the 6.3 and 6.4 releases. An enhanced version of the alternate
code generation mitigation is planned for the 6.5 release.

3.1 arm64

RETGUARD was applied to the arm64 platform during the
OpenBSD 6.4 release cycle. Compared to the OpenBSD
6.3 release, the number of gadgets found by ROPGadget de-
creased from 69935 to 46, as shown in Table 4. This decrease
is attributable to the arm64 platform requiring instruction
alignment, so each function protected by RETGUARD be-
comes effectively gadget free. The remaining 46 gadgets are
all from assembly level boot code functions, which are un-
mapped after boot. Consequently, the OpenBSD kernel on
arm64 is effectively gadget free after boot. The results in
userland are much the same, with only a small number of
assembly level functions contributing gadgets to userland ex-
ecutables and libraries. These small numbers of gadgets are
generally insufficient for constructing arbitrary ROP chains,
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Figure 9: Instruction transformation
Original

Bytes
Original Instruction Transform

Bytes
Transform Instruction

48 89 c3 mov %rax,%rbx 48 87 d8
48 89 d8
48 87 d8

xchg %rbx,%rax
mov %rbx,%rax
xchg %rbx,%rax

Figure 10: Alignment sled
Original Bytes Original Instruction Transform Bytes Transform Instruction

49 bc c3 f5 28 5c
8f c2 f5 28

mov $0x28f5c28f5c28f5c3,%r12 eb 06
cc
cc
cc
cc
cc
cc

49 bc c3 f5 28 5c
8f c2 f5 28

jmp 6
int3
int3
int3
int3
int3
int3

mov $0x28f5c28f5c28f5c3,%r12

Table 4: Number of Kernel Gadgets (arm64)
OpenBSD Version # Unique Gadgets

6.3 69935

6.4 46

and so executing ROP attacks on OpenBSD binaries on the
arm64 platform is generally more difficult or impossible.

3.2 amd64
ROP mitigations have been applied to the amd64 platform
over several release cycles. The alternate register selection
mitigation was applied for the 6.3 release. An implementation
of the alternate code generation mitigation targeting some
common gadget forms was applied for the 6.4 release, in
addition to RETGUARD.

The alternate register selection mitigation removed approx-
imately 6% of unique gadgets from the kernel, with negligible
impact on code size and performance. The alternate code im-
plementation removed an additional 5% of unique gadgets,
at the cost of 6 bytes of additional code per transformation
(which yielded an approximately 0.15% larger kernel). Since
the xchg instruction is inexpensive to execute, the perfor-
mance impact of this mitigation was negligible.

At the time it was applied, RETGUARD removed approxi-
mately 50% of total gadgets from the OpenBSD kernel, and
around 20% of unique gadgets. The RETGUARD instrumen-
tation adds 31 bytes per function, and increased the size of the
kernel by approximately 7%. Additionally, each function re-
serves 8 bytes of space in the .openbsd.randomdata section for
its random cookie, with the consequence that the random data

section grows significantly compared to OpenBSD 6.3, and
takes more time to fill when an executable launches. Perfor-
mance overhead of RETGUARD is divided between startup
cost, which is dominated by generating the random cookies
for each function, and the runtime cost of executing the in-
strumentation in each function. For a typical system build
workload, the runtime cost of RETGUARD is approximately
2%. Results summarizing the number of unique gadgets found
in the OpenBSD amd64 kernel across releases is shown in
Table 5. This table shows the OpenBSD version, number of
unique gadgets, and kernel size for successive OpenBSD re-
leases, with preliminary numbers shown for OpenBSD 6.5,
which is currently in development. When reading this table, it
is important to point out that many things were added to the
kernel during each release cycle which contributed to the over-
all size of the kernel and the number of gadgets. For example,
in the 6.4 release, RETGUARD accounted for approximately
7% of the additional code size, but the kernel grew by approx-
imately 17%. The remaining 10% of code was new drivers
and other enhancements, and this code also contributed to
the overall gadget count. With this in mind, we introduce a
new metric for measuring gadget density: unique gadgets per
kilobyte. With this metric, we can estimate the effect of ROP
gadget mitigations independent of the code size and more
easily compare the effectiveness of gadget reduction over re-
leases. Figure 11 shows kernel gadget density over several
OpenBSD releases, including an estimate of new alternate
code generation mitigations planned for OpenBSD 6.5.

In userland we found similar results, with the number of
unique gadgets declining in successive OpenBSD releases.
Figure 12 shows the total number of unique gadgets in the pop-
ular sshd binary and all linked libraries. This figure shows a re-
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Figure 11: Kernel gadget density (amd64)

Table 5: Number of Unique Kernel Gadgets (amd64)
Version # Unique Gadgets Size (kB)

6.2 60589 13167

6.3 57980 13190

6.4 51229 15438

6.5 21807 15852

duction of over 70% in the number of unique gadgets present
in a typical running sshd executable between OpenBSD 6.2
and the upcoming OpenBSD 6.5.

3.3 Effect on ROP Tooling
Figure 1 showed the output from ROPGadget against the
OpenBSD 6.3 libc, where we saw the tool successfully gen-
erated a ROP chain that executed a command shell using
gadgets found in the libc binary. When we run the same tool
against the OpenBSD 6.4 libc, we find that the tool fails to
find a ROP chain that will result in the program executing a
command shell. This is shown in Figure 13, where we see that
after applying the mitigations described in this paper, the ROP
tool is incapable of finding a write-what-where gadget, and
therefore unable to construct a ROP chain that will execute
a command shell. This result is true of many of the binaries
and libraries included in OpenBSD 6.4, including sshd and
all of it’s linked libaries.

4 Conclusion

In this paper we have described a series of ROP mitigations
applied in OpenBSD for both aligned and polymorphic (un-
aligned) ROP gadgets. For aligned gadgets, we have deployed
RETGUARD on both amd64 and arm64 platforms, which re-
sulted in a significant reduction of unique gadgets on amd64,

Figure 12: Number of gadgets in sshd and libraries (amd64)

Figure 13: ROPGadget ropchain against OpenBSD 6.4 libc

$ ROPgadget . py −−r o p c h a i n
−−b i n a r y OpenBSD−6 .4 / l i b c . so . 9 2 . 5

Unique g a d g e t s found : 5994
ROP c h a i n g e n e r a t i o n
==================================================
− Step 1 −− Write−what−where g a d g e t s

[−] Can ’ t f i n d ’mov qword p t r [ r64 ] , r64 ’ g a d g e t

and an almost total elimination of gadgets on arm64. For poly-
morphic gadgets, we have deployed a series of mitigations
that eliminate gadgets either through trivial changes to regis-
ter selection preferences, direct instruction modification, or
forcing alignment in the instruction stream. These mitigations
have resulted in a significantly reduced number of gadgets in
OpenBSD binaries, both in raw numbers and in gadget density.
We have shown that, as a result of these efforts, constructing
ROP chains on OpenBSD is more difficult than before, and
specifically shown that common ROP tools are now unable to
construct ROP chains that execute a command shell against
OpenBSD’s libc and other binaries and libraries.
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Abstract

We consider that Unix operating system should be
built on fine granular small parts (packages) to im-
prove the system maintenance. It is expected that it
enables speedy security update, system update track-
ing in detail, easy replacement and rollback of specific
parts.

We have implemented and run a new service to
distribute modular base system userland for NetB-
SD. We generate the least amount of modular base
packages by using basepkg.sh. It splits NetBSD dai-
ly binaries into 1000 over packages based on syspkgs

meta-data and ident comparison within the binaries.
This scheme drastically reduces the processing time
to realize operations within practical time.

Our system have shown that granular update sys-
tem and service can be implemented and operational
under breakdown approach. NetBSD users can main-
tain NetBSD base system in more granular way with
fine update history and build an arbitrary system
from the NetBSD minimal installation.

1 Introduction

Historically, before the use of Internet leased lines was
popular in 1990s, operating system (OS) had been
managed on one source tree and the source tree set
has been distributed. The typical example is BSD
Unix. It has been developed in its own source tree in-
cluding kernel, general commands, configuration files,
and manuals. BSD Unix distinguishes between the
official distribution and 3rd party software.

Another example is Linux distribution. It does not
distinct its own base system from third-party soft-
ware. It assembles a lot of small packages which are
created and maintained by many different authors.
To manage the whole system, it is inevitable to de-
velop software such as apt for Debian GNU/Linux
and yum (dnf in the future) for Red Hat Enterprise
Linux.

Aside from the origin of development styles, OS
built on fine granular small parts must be preferable
to improve the system maintenance. It is expected
that it enables speedy security update, system update
tracking in detail, easy replacement and rollback of
specific parts.

To reconstitute NetBSD base system to be com-
prised of small parts, we have implemented software
(Chapter 4) to dispose the base system to 1000 over
parts and run a service (Chapter 5) to distribute them
with our experimental client (Chapter 6). In this pa-
per we call our strategy breakdown approach in con-
trast to the bottom up one of Linux distribution.

The rest of this paper is organized as follows. We
define terms in Chapter 2. We introduce components
of the whole service in Chapter 3. The details of each
component are described in Chapter 4, 5 and 6. We
discuss several remaining issues in Chapter 7.

2 Terms

The term “package” implies both 3rd party software
management and a kind of a container. The usage
differs from OS to OS. We need to clarify the terms
“base system” and “package”. In this paper, we use
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nycdn.netbsd.org (CDN) hosted by fastly.com

NetBSD-daily 
daily build system
(New York)

our build system 
running on SAKURA Internet

1. download base.tgz, ... from nycdn

2. extract them

3. check ident for extracted binaries

4. run basepkg to generate packages

5. distribute packages

# nbpkg.sh update

# nbpkg.sh full-upgrade

    updating   openssl ...

    restarting postfix

    restarting sshd

    ... 

Figure 1: Overview of NetBSD base system package distribution service. It generates base packages by using
basepkg and distributes them. nbpkg.sh client demonstrates updating and restarting.

the term “package” as a container by default.

Linux distributions consider the whole system con-
sists of packages but BSD Unix(s) distinguish be-
tween the base system and 3rd party software. BSD
Unix(s) consider that the whole system consists of
the base system and 3rd party software.

“base system” implies a set of programs officially
maintained and distributed by the project. In almost
cases, the OS base system distribution is divided by
roles to a set of tarballs (which extension is known as
”.tgz”) such as ”base.tgz” (mandatory for the operat-
ing system), ”comp.tgz” (compiler tools), ”man.tgz”
(manuals) and so on. BSD Unix base system is com-
posed of a set of 10 or more tarballs.

In the BSD Unix, we manage each 3rd party soft-
ware as a “package”. “package” itself implies a
container which consists of software, documentation,
configuration files and this package’s meta data re-
quired to operate in installation and de-installation.
We also call the 3rd party software system “pack-
age”. Each BSD Unix project provides the package
system such as pkgsrc (NetBSD), ports (FreeBSD
and OpenBSD) and so on. Users can easily handle
the package by using the management system.

3 Components of NetBSD Base
System Package Distribution
Service

We have implemented and been running a new ser-
vice to distribute modular base system userland for
NetBSD (Figure 1). This distribution system con-
sists of three components: (1) basepkg[1, 2] (2)
nbpkg-build.sh[3] (3) nbpkg.sh[3].

basepkg splits NetBSD base system into 1000 over
packages (we call them base packages). basepkg is
a simple almost POSIX compliant shell script built
on pkgsrc[4] framework and syspkgs[5] meta-data.
Hence the naming convention of base package is
same as syspkgs one such as base-crypto-shlib

(shared libraries for cryptography, classified as a
mandatory system).

nbpkg-build.sh is the top level dispatcher to
run basepkg for NetBSD binaries downloaded from
nycdn.netbsd.org. We generate base packages
which changes are detected based on ident (RCS Id)
comparison. Though community based developmen-
t does not have powerful computer resources, those
measures reduce the work, as a result, our build sys-

32



n
y
cd

n
.n

e
tb

sd
.o

rg

$DESTDIR

.../n
e
tb

sd
-8

/$
A

R
C

H
/m

a
in

t/$
p

a
ck

a
g
e
.tg

z

.../n
e
tb

sd
-8

/$
A

R
C

H
/a

ll/$
p

a
ck

a
g
e
.tg

z

generate them under $category/$package/                       
                                                           +PRESERVE
                                                           +BUILD_INFO
                                                           +CONTENTS
                                                           +DESC
                                                           +COMMENTS
                                                           +INSTALL
                                                           +DEINSTALL

basepkg.sh

pkg_create ...

basepkg.sh temporary meta-data

   work/$category/FILES                  
     work/$category/$package/PLIST

syspkg meta-data

$SRCDIR/distrib/sets/mi

$SRCDIR/distrib/sets/md.$ARCH

               +

basepkg patches

nbpkg-build.sh
    download, extract, compare ident 

package list to generate
based on ident comparison

Figure 2: basepkg internals

tem, running on low spec VPS1 , works out daily to
provide base packages for NetBSD 8.0 stable branch
(62 targets).
nbpkg.sh is an experimental client to show our op-

eration model. basepkg is built on pkgsrc framework
so that we can use pkgsrc functions as could as possi-
ble. nbpkg.sh is an extension to pkgin[6] (pkgsrc/
pkgtools/pkgin) which provides apt/yum/dnf like
functions to maintain the base system more system-
atically.

4 Basepkg

basepkg is a 1200 lines Bourne shell script to split
NetBSD base system into 1000 over packages. It
consists of meta-data and package build system. The

1bytebench(pkgsrc/benchmarks/bytebench) shows our VP-
S power is considered to be almost same as a popular home
server such as NEC S70 (its CPU is Intel Pentium G6950) on
sale in 2011.

basepkg processing (Figure 2) is briefly described be-
low. See the reference[1] for more details.
The meta-data is derived from NetBSD source tree

but modified and enhanced by us. The basepkg

meta-data is based on syspkgs one, files in /usr/

src/distrib/sets/lists/. Each line of the meta-
data file contains a set of information (path, syspkgs
package name, comments) such as

./bin/ls base-util-root

./bin/rcorder base-obsolete obsolete

./bin/rump.dd base-util-root rump

./usr/bin/cpp base-util-bin gcccmds

It has been maintained but is inconsistent and con-
tains several bugs. basepkg imports the syspkgs

meta-data and modifies it to fix several bugs and en-
hances it to support X11.
The actual build process of basepkg is running

pkg_* utilities (pkgsrc/pkgtools/pkg_install) to
split the base system according to the meta-data.
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# list_arch = amd64 evbarm evbmips evbppc hpcarm i386 sparc64 xen

# arch = amd64

# branch = netbsd-8

# url_base = http://nycdn.netbsd.org/pub/NetBSD-daily/netbsd-8/

# build_nyid = 201811180430Z

# build_date = 20181118

# build_url = $url_base/$build_nyid/$arch/binary/sets/

for arch in $list_arch

do

nbdist_download $arch $build_url

nbdist_extract $arch

nbdist_check_ident_changes ...

if "X$is_ident_changes_found" = "Xyes"; then

nbpkg_build_gen_basepkg_conf $arch $branch ...

# (1) maint mode

nbpkg_build_run_basepkg $arch $branch "maint"

nbpkg_release_basepkg_packages $arch $branch "maint"

# (2) all mode

nbpkg_build_run_basepkg $arch $branch "all"

nbpkg_release_basepkg_packages $arch $branch "all"

fi

done

Figure 3: Concept of the nbpkg-build.sh main loop

basepkg is built on pkgsrc framework. It is good to
avoid reinventing the wheel. basepkg-generated
package format is same as pkgsrc one, so that we can
use features pkgsrc provides. For example, we can
use pkg add/pkg delete to add/remove base pack-
ages. Moreover, we can use more powerful utility
such as pkgin which provides apt/yum/dnf like func-
tions for pkgsrc. By using pkg summary(5), pkgin
resolves associated dependencies among base pack-
ages and provides smart operations for installation,
removal and upgrade of base packages.

5 Base Package Generation and
Distribution System

5.1 Overview

basepkg is just a script to split NetBSD base
system to 1000 over packages. To provide the
NetBSD base system upgrade service, we need
to design, implement a package generation system
(nbpkg-build.sh) described in this section and run
the web service at http://basepkg.netbsd.fml.

org. nbpkg-build.sh is the top level dispatcher
to run basepkg to split NetBSD binaries. Both
nbpkg-build.sh and the web runs on SAKURA
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# tar -C $DEST_DIR -zxpf $DIST_DIR/*.tgz

# find $DEST_DIR -exec /usr/bin/ident {} \; > $IDENT_NEW

# diff $IDENT_OLD $IDENT_NEW |

sh $CONVERT_TO_PACKAGE_NAME_VIA_SYSPKGS_DATA > $TARGETS

Figure 4: Brief description of logic on how to compare ident information: NetBSD binaries e.g. base.tgz,
etc.tgz, ... are downloaded to $DIST DIR and are extracted at $DEST DIR. The final output $TARGETS
file contains only syspkgs names e.g. base-sysutil-bin. $TARGETS file is passed to basepkg.sh as an
optional argument.

Internet VPS(v3)[7]2.
nbpkg-build.sh (1) downloads binaries from

nycdn.netbsd.org (fastly CDN) (2) extracts them
(3) checks ident within the extracted NetBSD base
system binaries and (4) runs basepkg to generate
base packages.

5.2 Download and Extract NetBSD
Binaries

Firstly we need to prepare NetBSD base system bi-
naries to split.
It is preferable to build the binary from the source

code to avoid versioning problem (see the Section 7)
but it requires a lot of machine resources (both CPU
power and storage). To process them within prac-
tical time, we decided not to build NetBSD from
the source code but download NetBSD binaries pro-
vided as NetBSD-daily (what we call daily build).
The daily build system runs at Columbia Universi-
ty in New York[8] but we can download the binaries
via nycdn.netbsd.org hosted on fastly.com CDN
(contents delivery network). Also, our build machine
(basepkg.netbsd.fml.org running on SAKURA In-
ternet VPS[7]) has enough bandwidth to Internet.
Hence we can download binaries enough fast.
It is observed that the time to download and ex-

tract them requires not more than 300 seconds (the
average is 200 seconds for downloading and 70 sec-
onds for extraction) per one distribution e.g. amd64
on netbsd-8 branch. If we build NetBSD from the

23 CORES, 3GB MEMORY, 200GB HDD

source on this host, it requires at least 1200 second-
s even in the case of running “build.sh -u release”
(18000 seconds in the case of running “build.sh re-
lease”). This process contributes to the processing
time reduction and does not consume the storage
temporarily required for build process.

5.3 Base Package Generation Strate-
gy

We have implemented the following two plans to con-
sider which is proper in operating NetBSD upgrade
service using base packages.

The plan A proposed in AsiaBSDCon2018[1] is
that we generate all available base packages daily and
determine which base package should be installed ac-
cording to a given configuration based on NetBSD
security advisory. In this case, the implementation of
the package generation system is simple but we need
huge machine resources. To make matters worse, it
is not automatic since somebody needs to edit the
configuration.

The plan B is opposite to the plan A. We have
only to generate the least amount of base packages
having the change after the major release. We can
find changes by tracing the ident information in bi-
naries, To implement it, we need to modify both
nbpkg-build.sh and basepkg but this modification
can drastically reduce the amount of work in gener-
ation base packages. In addition it is important that
this mechanism runs automatically.

Hence we decided to use and run the service based
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on the plan B. We define the basis of the ident com-
parison is the most recent major release, NetBSD 8.0
release now.

5.4 Ident Based Comparison

The ident based comparison is straightforward (Fig-
ure 4). We check all files on the extracted NetBS-
D base system and compare the ident information
with the previous one to determine which base pack-
ages are changed and so should be re-generated. The
list of base packages which should be re-generated is
passed to the basepkg as the configuration.

In this case, basepkg has only to build a minimum
of packages. Both the saving of targets and down-
loading via CDN (Section 5.2) drastically reduces the
processing time. Currently our processing time per
arch per branch is about 1300 seconds on average. It
includes downloading, extraction and basepkg which
runs two times to generate packages for two modes
described below (Section 5.5). It is estimated that
we can process 62 targets of netbsd-8 branch within
one day. We try to process Tier 1[9] targets twice a
day to keep the base package up-to-date as could as
possible, but Tier 2 ones once a day.

5.5 Package Dependency Problems

Our breakdown approach introduces a new kind of d-
ifficulty on that the basis of comparison is arbitrary.
Consider the following cases: (1) keep the system up-
to-date mainly for security update (2) build up an
arbitrary system from the minimum one. They are
similar but the dependencies among base packages
differ in essential. In the case 1, we need only pack-
ages having the change after the major release. In
the case 2, we need to prepare both all base packages
for the major release and packages having the change
after the major release. The package dependencies
in two cases differ since packages in the case 2 de-
mands major release packages if needed. Since the
coexistence of different dependency within one pack-
age is difficult, our system distributes two kinds of
base packages with different dependency at different
URLs.

[at .../netbsd-8/$ARCH/maint/]

SHA512

base-cron-bin-8.0.20181129.tgz

base-ext2fs-root-8.0.20181129.tgz

base-ipf-bin-8.0.20190119.tgz

...

[at .../netbsd-8/$ARCH/all/]

SHA512

base-adosfs-root-8.0.20180717.tgz

base-amd-bin-8.0.20180717.tgz

base-amd-examples-8.0.20180717.tgz

base-amd-shlib-8.0.20180717.tgz

...

base-cron-bin-8.0.20180717.tgz

base-cron-bin-8.0.20181129.tgz

base-cron-root-8.0.20180717.tgz

...

Figure 5: Examples of packaegs for both maint and
all modes. The path of “all” mode contains base
packages for 8.0 release (suffix .20180717) and pack-
ages (e.g. suffix .20181129 and .20190119) which
changed after 8.0 release. Howeve the path of “main-
t” mode contains only changed packages.

In the case 1, we call it maint mode, we assume
a scenario that users have full-installed NetBSD (e.g.
NetBSD 8.0) initially and keep it as the latest NetBS-
D 8.0 stable (netbsd-8 branch). In this case, we have
only to install (overwrite) all base packages having
the change after the major release. This update pro-
cess is able to work automatically. It is possible that
each user can install the specific package manually if
needed.

In the case 2, we call it all mode, it is necessary
to think about the possibility that we need to install
packages which do not exist on the system. Consider
the minimal NetBSD which consists of only base.tgz
and etc.tgz. If we newly want to install a C com-
piler (e.g. /usr/bin/cc), which does not exist now,
we only have to run ‘‘pkg add comp-c-bin’’. If
comp-c-bin has no difference from 8.0 release, there
is no comp-c-bin package in the maint mode (case
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1). In the case 2, we need to obtain and instal-
l 8.0 release comp-c-bin base package which name is
comp-c-bin-8.0.20180717.tgz. Hence in this case,
for the possibility building any system from a scratch,
we need to prepare both all base packages for the ma-
jor release and packages having the change after the
major release.
The details of package dependency are as fol-

lows. For example, let autopsy the dependen-
cy of base-sysutil-bin-8.0.20190119.tgz tarball.
+CONTENTS file (pkgsrc meta-data) in the tarball in
maint mode is defined as

@pkgdep base-sys-shlib>=8.0.20181129

but +CONTENTS in all mode contains

@pkgdep base-sys-root>=8.0.20180717

@pkgdep base-sys-shlib>=8.0.20181129

@pkgdep base-sys-usr>=8.0.20180717

where the suffix 8.0.20180717 implies the NetBS-
D 8.0 release we define artificially since NetBSD 8.0
was released on July 17, 2018. Due to this artificial
dependency

@pkgdep $package>=8.0.20180717

a package which does not exist can be installed auto-
matically.

6 Experimental Client

6.1 Overview

We provide an experimental client nbpkg.sh to show
our operation model. As mentioned above, basepkg-
generated package format is same as pkgsrc one, so
that we can use full features pkgsrc provides. We
design our client as a wrapper of pkgin to provide
integrated service like apt/yum/dnf on Linux distri-
bution.
Our current experimental client uses /var/db/

pkg/ directory for package registration which pkgsrc

uses originally. Hence /var/db/pkg/ holds installed
package data for both pkgsrc and basepkg. It is
considered to be easy to distinguish basepkg pack-
ages from pkgsrc ones by names, since the naming

convention for pkgsrc and basepkg are very differ-
ent.

6.2 Usage

nbpkg.sh usage is similar to apt command. See
a demonstration running update and full-upgrade

commands in Figure 6.
At the first time, nbpkg.sh checks the environ-

ment and install mandatory package management
utilities (pkgsrc/pkgtools/) such as pkg install

(pkgsrc/pkgtools/pkg_install) and pkgin by de-
fault if they are not found.
‘‘nbpkg.sh update’’ updates the database

(pkg summary(5)) from a remote repository defined
by the environmental variable PKG_PATH which is
hard-coded in nbpkg.sh.
‘‘nbpkg.sh upgrade’’ is reserved, not recom-

mended currently.
We can use ‘‘nbpkg.sh full-upgrade’’ to keep

the system up-to-date, the latest one on stable
branch, automatically. By default we assume maint

mode operation described above (Section 5.5).
‘‘nbpkg.sh full-upgrade’’ upgrades packages
specified by a file pkg_list2upgrade in PKG_PATH

e.g. http://basepkg.netbsd.fml.org/pub/

NetBSD/basepkg/netbsd-8/$ARCH/maint/pkg_

list2upgrade. pkg_list2upgrade describes a list
of all packages having the change after the major
release. It is prepared and updated by our system
nbpkg-build.sh.
We can install or remove arbitrary packages man-

ually. We assume all mode for such operation. For
example, to install a C compiler /usr/bin/cc, we
run ‘‘nbpkg.sh -a install comp-c-bin’’ where
-a option implies all mode (Section 5.5). It resolves
the dependecies so that it installs all packages re-
quired to use a C compiler. The packages to install
are the latest stable one if exists but the last major
release (8.0 release now) ones if the package has no
change after release.

6.3 Extension

Our client nbpkg.sh is not just a wrapper of pkgin.
It is extended to support (1) fool-proof function not
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# nbpkg.sh full-upgrade

Running install with PRE-INSTALL for pkg_install-20180425.

man/man1/pkg_add.1

...

Package pkg_install-20180425 registered in /var/db/pkg/pkg_install-20180425

...

Running install with PRE-INSTALL for pkgin-0.11.6.

bin/pkgin

man/man1/pkgin.1

...

Package pkgin-0.11.6 registered in /var/db/pkg/pkgin-0.11.6

...

Requesting http://basepkg.netbsd.fml.org/.../maint/pkg_list2upgrade

100% |***********************************| 435 967.66 KiB/s 00:00 ETA

435 bytes retrieved in 00:00 (608.60 KiB/s)

pkgin import /var/db/nbpkg/pkg_list2upgrade

reading local summary...

processing local summary...

processing remote summary (http://basepkg.netbsd.fml.org/.../maint)

... snip ...

downloading pkg_summary.gz: ...

calculating dependencies...done.

29 packages to install:

base-cron-bin-8.0.20181123 base-ext2fs-root-8.0.20181123

... snip ...

xetc-sys-etc-8.0.20181123

0 to refresh, 0 to upgrade, 29 to install

62M to download, 221M to install

proceed ? [Y/n] y

downloading base-cron-bin-8.0.20181123.tgz ...

...

installing base-cron-bin-8.0.20181123...

...

pkg_install warnings: 0, errors: 0

reading local summary...

processing local summary...

...

marking xetc-sys-etc-8.0.20181123 as non auto-removable

Figure 6: Example of upgrading the system
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to overwrite /etc by accident (2) alias function for us
to handle user friendly package names.
To implement the fool proof, etc-* packages was

removed from pkg_list2upgrade. Hence automatic
upgrade for etc-* packages does not work but you
can use explicitly running nbpkg.sh install etc-*

to update files under /etc/ (We trust each user for
such critical actions).
We support nbpkg.sh alias function since syspkgs

naming convention is too far from the usu-
al convension. For example, syspkgs name
base-crypto-shlib contains libcrypto.a and
libssl.a but generally we call them openssl

shared libraries. base-crypto-bin includes
openssl command. By our alias support, we can
use ‘‘nbpgk.sh upgrade openssl’’ to update both
openssl libraries and commands. Currently the fol-
lowing aliases are defined.

alias syspkgs-package-name

------------------------------------

libcrypto.so base-crypto-shlib

libssl.so base-crypto-shlib

openssl base-crypto-shlib

openssl base-crypto-bin

openssh base-secsh-bin

named base-bind-bin

bind base-bind-bin

postfix base-postfix-bin

We can install openssh by running ‘‘nbpkg.sh

install openssh’’ instead of ‘‘nbpkg.sh

install base-secsh-bin’’. This definition is
hard-coded currently, it is an issue to resolve in the
future.
Theoretically we can rollback the specific package

manually. After checking package registration logs
in /var/db/pkg, we run nbpkg.sh to remove the
installed package and enforce the installation of the
previous one.

7 Discussion

We have resolved several issues addressed in
AsiaBSDCon2018[1]. Especially the use of nycdn.
netbsd.org and ident based comparison contributes

to the huge reduction of processing time. However it
remains a few difficult issues such as base package ver-
sioning and dependency discussed in the Section 5.5.
We do not discuss syspkgs meta-data maintenance
problem such as validation of the granularity since
these topics are beyond our 3rd-party development
scheme.
The versioning problem implies we distinguish

base packages by the date suffix not semantic
versioning[10] x.y.z e.g. 1.0.0, 1.0.1 and so on.
In the case of the bottom up approach such as Lin-

ux distribution, OS assembles a lot of small packages
which are created and maintained by many different
authors. Each package has each author and version-
ing e.g. etc-passwd-1.0.1, bin-ls-2.0 and timezone-
20190101. The versioning are inconsistent but mean-
ingful in some sense.
In the case of BSD Unix, the whole system is main-

tained uniformly so that the version is NetBSD 8.0
for not only the whole system but also all parts in
it. Paradoxically we cannot determine the precise
version for each granular base package since the au-
thor or maintainer is ambiguous for each small parts.
For example, consider etc-sys-etc package which
contains password related files such as /etc/passwd,
/etc/master.passwd and so on. We can assign etc-
sys-etc-8.0.0 for NetBSD 8.0 release, but we cannot
automatically assign etc-sys-etc-8.0.1 when a part of
the etc-sys-etc package e.g. /etc/passwd.conf is
updated on netbsd-8 branch. In addition, NetBSD
daily build does not consider the update details and
generates the whole NetBSD system on a daily ba-
sis. Hence, especially in the case of our system, it is
practical to assign etc-sys-etc-8.0.YYYYMMDD e.g.
etc-sys-etc-8.0.20180717 not etc-sys-etc-8.0.0.
The date based naming convention may introduce

the following problem. If the base package generation
does not end within one day, package names for the
same source changes may be different among archi-
tectures e.g.

amd64/all/base-sys-shlib-8.0.20190101.tgz

...

zaurus/all/base-sys-shlib-8.0.20190102.tgz

However it is considered to be enough practical in
order to keep the system up-to-date. We always have
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only to install the latest base packages irrespective of
the precise package version name since the version-
ing is consistent within each branch and architecture.
Hence the versioning problem must be trivial from
the point of practical or operational view.

8 Conclusion

We reorganize NetBSD userland by breakdown ap-
proach and run the base package distribution service
for NetBSD users.

Our build scheme is based on the use of NetBSD
daily binaries via CDN and ident based comparison
to generate the least number of base packages. It
enables practical time operations.

Our client is useful to maintain the base system
in more granular way and build an arbitrary NetB-
SD system from the minimum. Most importantly,
we can upgrade NetBSD with detailed history data
stored under /var/db/pkg/. We can trace the up-
date details on a daily basis so that we can rollback
if needed.

Our approach introduces another package depen-
dency problem but it is trivial from the point of prac-
tical view. Our system must be beneficial for NetBSD
users.
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Abstract
Operators of computer systems need to be aware of the

state of their systems. As systems and networks become more
intricate, the need for this information increases. This increase
in complexity also leads to an increase in failure modes, often
creating modes unique to the environment.

This means that any monitoring setup must be as unique as
the environment it operates on if it is going to be of use. As a
result, it is frequently not possible to simply run an off-the-
shelf solution, and an understanding of the principles behind
monitoring systems must be applied to the implementation of
your solution.

This paper will cover many of the basic areas for monitor-
ing, and how they can be applied to FreeBSD systems.

1 Introduction

Monitoring of large numbers of systems is a complex balance
between being sensitive to abnormal conditions that indicate
problems, and filtering out false positives. Modern operating
systems offer a large number of metrics to monitor, but not all
are useful, and many of the things that are useful to monitor
are not immediately apparent, or are difficult to find, espe-
cially for someone new to monitoring servers. The same error
can have a different meaning or cause depending on other
factors on the system, and without proper monitoring, it will
be difficult to track down the source.

1.1 Reasoning for Monitoring
It is important to understand why we are interested in monitor-
ing a computer system before we implement it. A computer
or the FreeBSD operating system is a very intricate thing.
To monitor all aspects of the system would be an incredible
undertaking. So we need to reduce what we monitor down to
an achieveable quantity.

The reason for running a computer at all is because they
perform useful work. Parts of the computer or operating sys-
tem that is needed to perform that work are important and

need to be monitored. Conversely, any part that is not needed
for this work is unimportant and can be ignored. Attempt-
ing to collect and monitor unimportant information simply
increases the difficulty of determining whether the system is
working as intended.

1.2 An Abridged History of Monitoring Tech-
nologies

In the beginning, all observation of a computer’s state was
done manually by a human operator. Whether this was lights
on a status panel, or messages printed to STDERR, this would
go directly to a human’s attention. Daemons that are not run
interactively log any problems to syslog, and any log entries
with a high enough error level would be shown to the operator.

This methodology has persisted in many ways. Although
on most servers TTY1 is is not watched by anyone, all log
messages of level err1 or higher are printed there by default
in FreeBSD. Many daemons will log errors, or print them to
STDERR, and promptly forget about them, making the error
impossible to spot unless you were filtering through the log
file. Although logging of errors is useful for diagnosing an
issue and determining the cause, is is significantly less useful
for detecting the problem in the first place.

Technologies such as SNMP2 solve some of this problem by
allowing information on the system’s state to be procedurally
retrieved by a remote system. Unfortunately this is limited
to information about the operating system, as few programs
have support for providing data through SNMP.

Many programs now offer some form of status output that
can be externally retrieved. BIND dumps statistics to a file,
Nginx has a status page, and Varnish offers statistics through
varnishstat. Although this allows each program to offer
information tailored to how the program operates, this has
the limitation that each one is unique, and any monitoring

1LOG_ERR is the 4th highest level in syslog. LOG_EMERG, the highest,
is normally broadcast to all users terminals

2SNMP - Simple Network Management Protocol
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must be custom-built for the combination of your monitoring
system and the program being monitored.

2 Availability

The simplest form of monitoring is availability checks; i.e.
"does it work?". These tests ensure that at some higher level,
the system works as intended. This could be as simple as send-
ing a ping and seeing if the system responds. If the system
answers the ping, then we can infer many things: the system
is running, it has power, it has a working network connection,
and so on. There are advantages and disadvantages to high-
level tests. They simplify the monitoring by not requiring a
separate check at each level, but if the check fails, the reason
why might take some digging to solve.

One check of this sort is to use netcat to check if a service
is listening on a given port. Figure 1 shows a simple check to
see if a webserver is listening on port 80 on IPv4. This can be
useful for testing services that don’t have an easy way to do
a functionality check, but this way you can at least tell that
something is listening.

Often, a program can listen on multiple ports or addresses.
A typical web server will be listening on ports 80 and 443,
on both IPv4 and IPv6. Doing 4 seperate checks of the web-
server’s status page would be redundant and incur pointless
overheat. If you only are checking one port, you might not
notice a problem on the other ports, such as the server failing
to listen on IPv6, but otherwise working normally on IPv4. A
simple TCP connection check is enough to catch that failure
case.

Other examples of availability checks include loading a
web page, logging in with SSH, and sending an email to a
monitored mailbox.

3 System Resources

A computer offers resources, and services running on the com-
puter will use some of those resources. Ensuring that those
resources are available is one of the main tasks for monitoring
at the operating system level. Some of these resources include
CPU time, memory, disk space, and network bandwidth.

3.1 CPU
SNMP offers 2 ways to get your CPU usage. One is to use the
UCD-SNMP-MIB::ssCpuRaw* values to get a counter of the
CPU time spent and average it on your monitoring interval.
The other is to use the UCD-SNMP-MIB::ssCPU* values which
are an integer, pre averaged over 1 minute, divided down by
the number of processors, and rebased as a percentage. See
figure 2.

These 2 collection methods represent 2 different types of
measurement: the rolling average, and the snapshot. A rolling
average shows an average usage over a given window, in
this case the window is the measurement interval. Rolling
averages will account for all usage in that window, but as a
side effect will smooth out spikes shorter than the window
size. A snapshot shows the exact level at the time of the
measurement. This shows a more exact level, but only at the
time of the measurement. Any spikes outside of the time of
the measurement will be missed.3

Neither is necessarily better, both have their strengths and
weaknesses. If you have a cron job running every 5 minutes
that is using all available CPU for 30 seconds, and you check
CPU usage every 5 minutes, a rolling average will show only
10% usage, and a snapshot might show either 100%, or 0%.

3.2 Load Average
Although it seems like the easiest thing to check, load average
has a number of issues. It fails to account for multiple cores,
and the distinction between cores and hyperthreads is lost on
it. It varies wildly between workloads: our monitoring servers
will show loadavg of 16 on a 4 core machine, with only 30%
CPU usage, and video server with its CPU fully used might
only show a load average of ˜8 on an 8 core machine.

3.3 Memory
We need to ensure that there is free memory available for
programs that need it. However not all memory usage is equal.

3While the UCD-SNMP-MIB::ssCPU* values are strictly a rolling average
over a window of 1 minute, for checks with an interval > 1 minute it is
functionally a snapshot.

$ nc -z -4 host 80
Connection to host 80 port [tcp/http] succeeded!

Figure 1: A simple check with netcat to see if something is listening on port 80

$ snmpget -c public -v 2c server.example.com UCD-SNMP-MIB::ssCpuIdle.0
UCD-SNMP-MIB::ssCpuIdle.0 = INTEGER: 83
$ snmpget -c public -v 2c server.example.com UCD-SNMP-MIB::ssCpuRawIdle.0
UCD-SNMP-MIB::ssCpuRawIdle.0 = Counter32: 1653347551

Figure 2: Getting CPU data out of SNMP
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FreeBSD will put unused memory to use, by using it for cache
and for the ZFS ARC.4 ARC and cache will frequently con-
sume most free memory, but the system will free up memory
being used for cache when needed. This creates a measure-
ment problem, as memory being used for ARC is counted as
wired. You can see an example of this in figure 3. To get use-
ful numbers, you have to count the used memory minus the
ARC, count the ARC and cache as memory that can become
available, and the memory that is truly free.

All of the statistics from the arc and regular memory usage
can be found in sysctl: kstat.zfs.misc.arcstats,
vm.stats, and vm.stats.vm.v_page_size.5 You
can even get a count of how many times the ARC
has been throttled due to memory pressure from
kstat.zfs.misc.arcstats.memory_throttle_count

3.4 Network

Because packets are routed from network provider to network
provider on their route, a problem in the middle of the route
can cause connection issues. Frequently, these problems will
cause packets to be lost, or to be routed on sub-optimal con-
nections and cause the packets to take longer from source to
destination. We can use ICMP between remote systems to
detect loss and high latency along the route.

The status of the network connection itself deserves check-
ing. Ethernet link speeds are typically autonegotiated, and
negotiations can sometimes return a less than optimal result.
Some service providers will throttle your connection speed if
you’re over your usage quota. In any case, it’s good to know
if the connection is operating at the speed we want it to be.
FreeBSD’s ifconfig will show you the media settings for
an interface, which includes the speed:

$ ifconfig | grep media
media: Ethernet autoselect (1000baseT )

4ARC: Adaptive Replacement Cache
5Note that ARC stats are in bytes, and memory stats are in pages, so you

need to multiply memory stats by page size to get an even comparison.

3.5 Bandwidth

Checking the network utilization is pretty straightforward
with SNMP. Net-SNMP implements the IF-MIB::ifXTable,
which shows statistics for each interface. We can get the
number of octets6 sent and received on the second interface
in the table, as in figure 4. Usage is stored as a counter of
total octets sent since system boot. If we store the value and
subtract the old value from the new one, we get a delta of the
total bytes sent over that time interval.

Note that we are using ifXTable which uses 64 bit coun-
ters. SNMP also has ifTable, which only uses 32 bit counters.
A 32 bit counter of bytes will roll over at ˜4 GB, which can
be sent in less than 5 minutes on a 10 Gb/s interface.

For those who rent their servers, the total data transfered can
also be a limited resource. Many providers limit the amount
of data you can send and receive, usually some number of
terrabytes per month. Since the method we’ve discussed for
monitoring network usage measures in deltas of bytes, if we
store those deltas, we can tally them up and measure usage
over the interval of interest. ScaleEngine uses a program
called RTG [1] for this, which logs the deltas to a MySQL
database, where we get the data for usage information.

3.6 Disk Space

Free space on disk is important if anything needs to write to
the disk. Most filesystems, ZFS included, will perform poorly
if they do not have some free space.

A common way to watch your disk space is to use SNMP to
check free space on /. That will not work as expected with
ZFS. Net-SNMP’s disk checks are not ZFS aware, and see
each dataset as a partition, and any data stored on a different
"partition" will cause the root partition to shrink, rather than
show more space used. A stock FreeBSD installation will only
have ˜5 GB on the root dataset, meaning the free space on the /
"partition" won’t drop below 50% free space until there is only
5 GB free for the root dataset. Since most programs will not
be writing to the root dataset, this will only ensure that there
is free space on that one dataset. If you set a reservation on the

6octets = bytes

Mem: 9588K Active, 103M Inact, 2786M Wired, 4992K Cache, 55M Free
ARC: 1935M Total, 603M MFU, 1202M MRU, 560K Anon, 19M Header, 111M Other

Figure 3: Memory usage from top

$ snmpget -c public -v 2c server IF-MIB::ifHCOutOctets.2
IF-MIB::ifHCOutOctets.2 = Counter64: 26790537050371
$ snmpget -c public -v 2c server IF-MIB::ifHCInOctets.2
IF-MIB::ifHCInOctets.2 = Counter64: 17901892810225

Figure 4: Getting counters for the second NIC
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root dataset, that will be seen as free space, even though other
datasets that do not have reservations will be out of space.

It’s better to use ZFS to check ZFS. ZFS has some use-
ful tools, and also has good output handling for automatic
parsing:

$ zfs list -pH -o name,used,avail
mjolnir 46128820224 67251605504
mjolnir/ROOT 12187820032 67251605504
mjolnir/ROOT/default 12187729920 67251605504
mjolnir/tmp 157851648 67251605504
mjolnir/usr 29228777472 67251605504
mjolnir/usr/home 27944427520 67251605504

ZFS offers a number of advantages over SNMP for disk
space checks, making it worth the exta labour to implement
the checks. ZFS has per-dataset granularity, quota information
is readily available, and jail usage is easy to break down. If
you’re only able to work with SNMP, then make sure you’re
checking on all datasets you care about, not just /.

3.7 Disk Health
Disks are consumables, whether they are hard disks or solid
state drives. Staying on top of the health of the drives will
allow you to have some chance of anticipating a failure. We
can get the disk information using smartctl.

A study by Google [2] found that the only SMART errors
that correllate to drive failure is reallocated sectors, weakly
correlating for online reallocations, and more strongly for
offline reallocations. SMART value 5 is online reallocation,
and value 198 is offline reallocations. Value 197 is the same as
198 for most manufacturers, Toshiba being the only exception
we’ve encountered. We can monitor these 3 values along with
the overall health check using smartctl. Figure 5 shows an
example of these values.

Also of interest is the SSD wear values, but these vary
between manufacturers and we have yet to find a way to
measure them that gives usable data.

SMART will not predict all failures, and there are failures
external to the drive that can make it unusable. This could be a
cable error, data corruption, or some other error that SMART
doesn’t catch. Checking zpool health is pretty simple: To see
if the drive is in a working state, we can check if ZFS sees the
drive as usable or not.

$ zpool list -o name,health

NAME HEALTH
mjolnir ONLINE

The health column shows the state of the pool, ONLINE is ok,
other states indicate a problem.7 If you want more details,
you can also parse through zpool status to find the exact
drive that has the problems.

4 Precursor Metrics

In addition to system resources, there are many things that
while they do not directly affect the system’s operation, they
can cause problems in some situations.

The temperature of the system can be monitored to watch
for overheating. FreeBSD does not make it obvious when
thermal throttling kicks in, other than some entries in syslog.
You can get the CPU temperatures out of sysctl.

dev.cpu.#.temperature

NTP is important for keeping your clock accurate. If you
drift out of sync, this will cause problems with anything time-
sensitive, including a lot of cryptography. You can check your
offset against an NTP server with ntpdate. Use a server that
is different than the one you’re syncronizing against in order
to catch problems with that server.

$ ntpdate -q 0.pool.ntp.org
... offset -0.007518, ...

While it might not seem useful, monitoring the uptime
of a server can be a good way to catch unexpected reboots.
Check if the uptime is less than twice the alert interval to have
an alert whenever a server reboots. The advantage to using
uptime rather than a cron entry for @reboot is that checking
the uptime with SNMP works on switches, allowing you to
catch reboots that might just apear as a brief period of packet
loss otherwise.8

5 Jails

Jails offer a lot of challenges in obtaining meaningful statis-
tics, especially if you care about isolating to the jail. CPU

7A state of OFFLINE indicates the device was taken offline. While this is
not an error, it is probably not a desired state.

8Switches can reboot really fast, and if it happens between checks there
might not be anything else to give it away

SMART overall-health self-assessment test result: PASSED
5 Retired_Block_Count 0x0033 100 100 003 Pre-fail Always - 0

197 Current_Pending_Sector 0x0022 100 100 000 Old_age Always - 0
198 Offline_Uncorrectable 0x0008 100 100 000 Old_age Offline - 0

Figure 5: SMART values of interest
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usage information will include usage from processes outside
the jail. Isolated network metrics are only possible if you are
using vnet, which only became the default in FreeBSD 12. If
you want to run SNMP in the jail, you have to build Net-SNMP
with special options so it works at all. Since much of the re-
source usage information will only be available on the host,
make sure you can corellate services in jails to the host they
are running on to be able to examine the state of resource
availability for that jail.

6 Different Types of Measurements

Regardless of the source of the measurement, the data that
can be retrieved will fit into 2 broad categories.

State measurements are of something that fits into a lim-
ited set of states. This could be a service that is up or down,
whether a connection succeeds or fails, or an HTTP status
code. Each state is typically tied to some stable meaning: a
degraded zpool is a degraded zpool, whether it’s on a super-
computer or your Raspberry Pi.

Metrics are a measurement in some range of possible val-
ues. CPU usage, ICMP RTA9 times, and a count of logged in
users are all examples of this. The administrator’s judgement
is required to establish thresholds for mapping values in this
range to a stable interpretation of the state it represents. These
thresholds will frequently vary from system to system. 600
Mb/s of network traffic might be unremarkable on a router,
but could be worrisome on a server that’s supposed to only be
serving DNS. Tools such as graphs are useful to track histori-
cal values, as the definition of typical may change over time
and as the system itself grows.

7 Conclusions

While the information shown here is by no means exhaustive,
this paper covers a selection of key methods and services for
FreeBSD systems in a server environment. Each environment
is unique, and this paper was based off of only one. However,
the basic principles will remain the same, and the techniques
here can be applied to far more than what the examples hold.

Availability

Most of the monitoring described here has been implemented
by the author, and is available on ScaleEngine’s Github:
https://github.com/scaleengine/se-nagios-plugins
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9Round trip average, or the average time it takes a packet to travel to the
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Abstract—Traditionally associated with low-power, mobile
computing, Arm is now seeking to enter the PC and the server
markets. Virtualization is especially used in these areas, and
current hypervisors rely on various hardware features to achieve
efficient virtualization. To this end, the Armv8 architecture in-
troduces a series of hardware mechanisms to reduce or eliminate
some of the overhead associated with running virtual machines.
Modern computers rely on hardware interrupts to communicate
with peripherals, and this aspect of virtualization has seen a series
of architectural optimizations from Arm. We will present our
experience emulating the Generic Interrupt Controller version
3, the interrupt controller designed by Arm. We have used
a mix of virtualization techniques: trap-and-emulate for the
memory-mapped regions of the controller, which are accessed
less frequently, and hardware accelerated virtualization where
possible. To validate our approach, we have created a virtualized
timer which is used to deliver timer interrupts to the virtual
machines. Timers are essential for modern operating systems, and
the virtualized timer is an abstraction over the Arm architectural
timer, the Generic Timer. As with the interrupt controller, we
have taken special care to take advantage of the available
hardware mechanisms to reduce the cost of virtualization. The
end result is a fully functioning hypervisor which is able to
create, run and destroy virtual machines on Armv8.0-A and later
processors.

Index Terms—Arm, Armv8, virtualization, hypervisor, inter-
rupts, timer

I. INTRODUCTION

Arm is the dominant architecture in the mobile space and
banking on its expertise in efficient computing, Arm is now
looking to enter the PC [1], [2], [3] and the server markets
[4], [5]. Virtualization is popular in these areas, especially in
the server room, where more than 75% of the servers use this
technology [6]. As a result, efficient virtualization solutions
are necessary in order for Arm’s CPU ambitions to come to
fruition.

Virtualization makes it possible for an operating system to
run in an environment that is indistinguishable from the real
hardware [7]. One of the characteristics that makes virtual
machines so appealing is resource control: the virtual machine
manager is always in control of the underlying hardware
resources: CPU, memory and input/output (I/O) devices. [8].
Early CPUs were slow, with speeds matching the I/O devices
of the day, and a simple method of communication was used,

This work has been sponsored by the FreeBSD Foundation.

called programmed I/O [9]. As CPUs became faster than the
devices with which they interacted, a new method of com-
munication was developed, which uses interrupts. Interrupts
are electrical signals sent directly to the processor. Today,
all processors use interrupts, and virtually every operating
has support for such a communication mechanism. As a
consequence, a virtualization solution must also provide a
way for delivering interrupts to a virtual machine, while still
retaining control over the hardware.

bhyvearm64 [10] is a type 2 hypervisor for the FreeBSD
operating system and it implements the virtual interrupt con-
troller on top of the Arm interrupt controller. Arm calls its
implementation of the interrupt controller the Generic Interrupt
Controller (GIC), and we have focused on version 3 (GICv3)
of the controller. As with other components of the architecture,
Arm has taken care to design the controller with features that
make virtualization more efficient.

GICv3 has three separate components: the Distributor, the
Redistributor and the CPU interface [11]. The Distributor and
Redistributor are memory-mapped and are accessed usually
only during the kernel’s boot process. Accessing these two
components is not performance critical and we have opted
for a trap-and-emulate approach to virtualization, where the
I/O registers are emulated and stored in memory as part of
the virtual machine context. On the other hand, the CPU
interface is used frequently, each time an interrupt is handled,
and has been designed as part of the processor, accessible via
fast hardware registers. For the CPU interface we have taken
advantage of various hardware features designed to achieve
fast virtualization.

Interrupt controllers are used by input/output devices to
communicate with the processor, and we have emulated the
system timer as the first device to use our virtual interrupt
controller. Timers are essential to the operation of any system
for a variety of reasons [9]. Among other things, they are
a key part of process scheduling. Arm’s implementation of
the system timer is called the Generic Timer, and it actually
consists of several timers [12]: the physical and the virtual
timers, which are always present; the secure physical timer,
present when the CPU implements the secure mode of oper-
ation; and the physical Exception Level 2 (EL2) timer, part
of the virtualization extensions. An operating system is free
to choose between the physical and the virtual timer, and we
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have chosen to emulate both of them in order to not restrict a
guest operating system to one of the timers. While emulating
the timers we also had to take into account the fact that the
host operating system must have exclusive access to one of
the timers for its own uses.

With the interrupt controller and the timer both emulated,
bhyvearm64 is capable of successfully booting and running a
FreeBSD guest, albeit with some limitations due to the project
being in its early stages: a virtual machine can only run on
one virtual CPU, and besides virtio support there is little user
space device emulation support.

The structure of the paper is as follows: the next section
will cover present hardware and software approaches to inter-
rupt controller and timer virtualization. In section 3 we will
describe the Armv8.0 virtualization model that bhyvearm64
implements. Section 4 is dedicated to the Arm interrupt con-
troller: first the GICv3 architecture will be explained, followed
by our approach to virtualization. Then we will proceed to
presenting the emulated timer in Section 6. Section 7 will
cover what we believe the immediate goals for bhyvearm64
should be in order to reach a level of functionality similar
to bhyve on x86. Finally, we will present our conclusions
regarding virtualization on the Arm platform.

II. RELATED WORK

Virtualization is not new. It appeared in the 1960s [9], and
gained momentum in the late 1990s when VMware launched
the first virtualization solution for the x86 platform [13], [9].
At that time, the x86 CPU architecture was unvirtualizable
according to the Popek and Goldberg definition and interrupt
injection and handling was done entirely in software. The
current version of the Intel interrupt controller, called the
x2APIC, has advanced support for virtualization and virtual
interrupts can now be asserted by the hardware, without
hypervisor intervention [14].

On the Arm side, the first hypervisor to take advantage of
the Arm virtualization extensions was KVM [15], [16], which
is part of the Linux kernel. KVM uses a similar approach
to bhyvearm64 for virtualizing the interrupt controller, taking
full advantage of hardware virtualization where available, and
resorting to a trap-and-emulate technique when that is not
possible.

Operating systems require timers to perform basic opera-
tions like scheduling or measuring the passing of time, but
when running inside a virtual environment it is impossible to
have the same precision as the physical machine because of
the inherent virtualization costs.

For historical reasons, the x86 architecture implements
several timers with various and sometimes overlapping uses:
some of them are used by software to measure the frequency of
another timer; and several are capable of generating a periodic
interrupt suitable for timekeeping. This adds to the software
complexity of offering a virtualized view of the passage of
time, as multiple timers need to be emulated and kept in sync
with each other [13].

By contrast, timer virtualization is relatively simple on the
Arm platform, as the General Timer is mandated by the archi-
tecture and is adequate for timekeeping usage by an operating
system. KVM uses an approach similar to bhyvearm64: the
virtual timer is made available to the virtual machine, with
the caveat that the interrupts generated by the timer still have
to injected by the hypervisor, The physical timer is emulated
in software because it is used by the host [15].

Arm has created a new virtualization model in version
8.1 of the architecture called Virtual Host Extensions (VHE)
[12]. When this feature is enabled, the host operating system
executes in a different CPU execution mode than the virtual
machine, with access to its own separate hardware timer.
The host can then assign the physical timer as well as the
virtual timer to the virtual machine, eliminating the need
for software emulation. KVM is working towards removing
timer emulatation in this scenario [17]. Currently bhyvearm64
doesn’t take advantage of VHE, but support is planned in the
near future.

III. BACKGROUND

bhyvearm64 is a type 2 hypervisor and virtual machine
manager for the FreeBSD operating system. It is based on the
existing bhyve virtualization solution for the x86 architecture.
Fig. 1 shows the main components of bhyvearm64, which can
be broadly categorized into user space programs and kernel
code. The user space programs are bhyveload, bhyve and
bhyvectl which an user employs to create, run and destroy a
virtual machine. Communication with the kernel is facilitated
by the library libvmmapi, which serves as a wrapper over ioctl
calls to a special device which uniquely identifies the virtual
machine. On the kernel side, the hypervisor is implemented as
a loadable kernel module name vmm.ko. The virtual interrupt
controller is abstracted as the software component named
VGIC and the virtualized timer as vtimer. Perhaps contrary to
its name, the virtual timer is a physical, hardware timer and
not a software abstraction, as is our virtualized timer. Both the
VGIC and the vtimer are emulated in kernel space to achieve
better performance and less overhead.

Arm introduced the virtualization extensions with version
7 of the Arm architecture, Armv7, and Armv8.0 follows the
same virtualization model. For CPUs that support virtualiza-
tion, the necessary hardware support is implemented as a
distinct processor execution mode, called Exception Level 2
(EL2). The hypervisor architecture is similar to KVM [15], the
Linux hypervisor. EL2 was created with a type 1 hypervisor
in mind. A type 1 hypervisor [9] runs directly on the hardware
and its functionality is centered around managing virtual
machines, as opposed to both virtual machines and user space
programs as is the case with a type 2 hypervisor plus host
kernel. This design decision unfortunately makes it impractical
to run the host operating system in EL2, and instead has forced
us to split the hypervisor code to run across two different CPU
execution modes.
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Fig. 1. bhyvearm64 architecture

There are several versions of the Arm Generic Interrupt
Controller. The most common are GICv2 and GICv3. GICv2
has two major drawbacks:

• Supports at most eight processors, which is limiting for
today’s platforms, especially when it comes to server
hardware.

• It is entirely memory-mapped, which makes accessing the
registers expensive.

Version 3 of the controller addresses these drawbacks by not
putting a strict limit on the number of CPUs and implementing
hardware registers for the most frequently used operations,
registers which have virtualization support. Version 4 of the
interrupt controller is identical to version 3 from a software
perspective, the only difference being added support for vir-
tual message-based interrupts. We expect adding support for
GICv4 in the future will be relatively painless.

IV. GICV3 ARCHITECTURE

Before describing the process of emulating interrupts, it is
worth getting familiar with the inner workings of the Arm
Generic Interrupt Controller version 3 (GICv3). An interrupt
is an asynchronous, external electrical signal delivered to the
processor [9]. The GICv3 controller implements four different
types of interrupts:

• Software Generated Interrupts (SGI). These are generated
by the operating system and used for inter-processor
communication. On other architectures, they are known
as Inter-Processor Interrupts (IPIs).

• Private Peripheral Interupts (PPI). This type of interrupts
are generated by devices that communicate with only one
CPU core, which is always the target for the interrupt.
Timer interrupts are PPIs.

• Shared Peripheral Interrupts (SPI). These are interrupts
that originate from I/O devices and can target any core
in the system.

• Locality-specific Peripheral Interupts (LPI). These are
message based interrupts and can be used by PCI Express

devices or other devices. The PCI Express specification
calls them Message-Signaled Interrupts (MSI) [18].

Besides their type, interrupts have other attributes that can
play a major role in deciding when and how they are delivered
to the processor: interrupt group, which can be group 0,
non-secure group 1 or secure group 1, and interrupt priority.
Interrupts can be delivered to the CPU as either an IRQ or
a FIQ (distinguished by their offset in the interrupt vector).
The security state (secure or non-secure) and their group are
the deciding factors in asserting an interrupt [19]. Group 0
interrupts are always delivered as FIQ interrupts. FreeBSD
configures all interrupts as non-secure group 1 interrupts,
which are always delivered as IRQs.

Interrupts can be masked based on their priority. Interrupt
priority also serves to arbitrate between multiple interrupts:
the interrupt with the highest priority will be asserted first.
There are attempts to use this priority mechanism to allow for
pseudo Non-Maskable Interrupts (NMI) on the Arm architec-
ture: interrupts designated as NMI will have a higher priority
associated with them, and when disabling interrupts, instead
of setting the PSTATE.I bit, a priority mask is used that will
block all “regular” interrupts, while NMIs can still be asserted
[20].

Fig. 2 is an overview of the GICv3 architecture. There are
three main components: a single Distributor per system, one
Redistributor and one CPU interface per core. The Distributor
is responsible for the configuration of the global interrupts
(SPIs) and the Redistributor is used to configure various
properties of the interrupts that are private to the core (PPIs and
SGIs). The CPU interface is responsible for advancing the state
machine associated with handling an interrupt. The Distributor
and the Redistributor are expected to be used sporadically,
typically at boot to configure the interrupts, as opposed to
the CPU interface, which is used each time an interrupt is
handled. Their implementation mirrors this usage pattern: the
Distributor and the Redistributor are memory-mapped, and
accessing them is slower, but that is acceptable because it is
rarely done; the CPU interface is implemented as hardware
registers and that means faster accesses.

There is one optional component that is missing from the
figure. That component is the Interrupt Translation Service
(ITS) and it is responsible for message-based interrupts. It
is optional because system integrators can choose to imple-
ment equivalent functionality in the Redistributor. bhyvearm64
doesn’t support LPI virtualization and for this reason it has
been omitted.

V. GICV3 VIRTUALIZATION

The virtual interrupt controller has been implemented tak-
ing into account the specifics of the GIC components and
how FreeBSD uses the interrupt controller. Interrupts can be
configured as group 0, non-secure group 1 or secure group
1 interrupts. Secure group 1 interrupts are always delivered
to the firmware running in the secure world, and those type
of interrupts haven’t been implemented in bhyvearm64, as the
hypervisor runs in the non-secure world.
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Fig. 2. GICv3 architecture

Group 0 interrupts are always delivered as FIQ interrupts
and the firmware can configure the hardware to deliver those
interrupts to the secure world, similar to how secure group 1
interrupts work. For this reason, FreeBSD and Linux choose
to configure all interrupts as non-secure group 1 interrupts and
bhyvearm64 has support for only this use case.

The interrupt controller is emulated entirely in kernel space.
Interrupts are time sensitive events, and switching execution to
user space to handle the emulation, and then switching again
to the kernel would have proven too costly. However, in order
to make it possible for the virtual machine manager to emulate
various devices, we have provided an API for asserting and
retiring interrupts.

A. Distributor and Redistributor emulation

Because the Distributor and the Redistributors are memory-
mapped and are seldom accessed, we have chosen a trap-
and-emulate approach for virtualization. This approach takes
advantage of how memory virtualization works: the guest
physical addresses that correspond to the Distributor and
Redistributor registers aren’t mapped in the Stage 2 translation
tables. The Stage 2 tables are responsible for translating a
guest physical address generated by the virtual machine into
a real address in physical memory. When the guest address
isn’t present in the tables, an exception occurs. With the
information associated with the exception, the hypervisor
is able to reconstruct the guest instruction and emulate it
accordingly without the need to propagate the fault to user
space.

The virtual Distributor and Redistributors are purely soft-
ware constructs that exist in the host’s memory as part of the
virtual machine context. Each time the guest tries to access
these virtual registers, the hypervisor is able to extract the
address from the exception syndrome. For each such memory
region we maintain an array sorted by the start address, and
using binary search we are able to quickly determine which
virtual register the virtual machine is accessing. Emulation
consists mainly in saving the value written by the guest and
returning that value on a read. The register values are also used
for determing which interrupt can be presented to the virtual
machine, in a manner similar to how the hardware works.

A complete list of interrupt controller registers that are part
of the virtual machine context can be found in Table I.

B. CPU Interface virtualization

The CPU Interface is used every time an interrupt is
handled, therefore it makes sense to make read and writes
fast. The CPU Interface is implemented as registers that are
part of the CPU and has support for hardware virtualization.
Virtualization is activated when the hypervisor configures EL2
to route all physical group 0 and group 1 IRQs to EL2
by setting the HCR EL2.IMO and HCR EL2.FMO bits. The
purpose of these settings is twofold:

• All physical interrupts will be routed to the host, therefore
enforcing the separation between the hardware and the
guest.

• All accesses to the CPU Interface registers are transpar-
ently redirected to a separate set of registers with identical
functionality, but which control the handling of virtual
interrupts instead of physical interrupts.

Because the virtual CPU Interface registers are used when
advancing the state machine of a virtual interrupt in exactly the
same way that the non-virtual registers are used for physical
interrupts, they are not writable by the hypervisor and are
not considered part of the virtual CPU context. However,
additional registers are used for asserting a virtual interrupt,
and these registers are only accessible at EL2.

C. Virtual interrupt injection

Virtual interrupt injection and handling is done mostly in
hardware. The hypervisor is responsible for choosing which
interrupt to inject in the guest. After the interrupt is injected,
its state becomes pending. When the guest is resumed, the in-
terrupt is asserted to the guest. The rest of the state transitions
are handled by the virtual CPU interface and no intervention
from the hypervisor is necessary.

TABLE I
VIRTUAL GIC REGISTERS

Component Type Register Description

Distributor

uint32 t GICD CTLR Distributor Control
uint32 t GICD TYPER Distributor Type
uint32 t GICD PIDR2 Peripheral ID2

uint32 t * GICD ICFGR Interrupt Config
uint32 t * GICD IPRIORITYR Interrupt Priority
uint32 t * GICD IXENABLERa Interrupt Enable
uint64 t * GICD IROUTER Interrupt Routing

Redistributor

uint32 t GICR CTLR Redistributor Control
uint32 t GICR TYPER Redistributor Type
uint32 t GICR IXENABLER0b Interrupt Enable
uint32 t GICR ICFGR0 Interrupt Config 0
uint32 t GICR ICFGR1 Interrupt Config 1

uint32 t[] GICR IPRIORITYR Interrupt Priority

System
Registers

uint32 t ICH EISR EL2 EOI Status
uint32 t ICH ELRSR EL2 Empty LRs
uint32 t ICH HCR EL2 Hypervisor Control
uint32 t ICH MISR EL2 Maintenance Status
uint32 t ICH VMCR EL2 VM Status

uint64 t[] ICH LR EL2 List Registers
aCombination of GICD ICENABLER and GICD ISENABLER.
bCombination of GICR ICENABLER0 and GICR ISENABLER0.
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To inject an interrupt, the CPU provides the hypervisor
with a series of registers, called List Registers. Each List
Register contains information about one virtual interrupt that
will be handled by the guest: the interrupt group, state, priority,
interrupt number and if the virtual interrupt maps directly to
a physical interrupt. A virtual interrupt can shadow a physical
interrupt, and in this case, when the guest deactivates the
virtual interrupt, the corresponding physical interrupt is also
deactivated.

The number of List Registers is limited and hardware-
dependent. The maximum number is 16 and it is possible to
have more pending interrupts for the virtual machine than the
number of List Registers. To get around this limitation we
keep our own buffer for the pending interrupts. Each time the
guest is resumed, we check this buffer and select the highest
pending interrupts to be injected in the guest.

The interrupts that will be asserted are selected based on
the guest interrupt configuration and it takes into account:

• The group, type and interrupt number: the interrupt must
be enabled in the Distributor and the Redistributor.

• If the target CPU for the interrupt is the current CPU.
• The priority of the interrupt relative to the other pending

interrupts.
• If two interrupts are equal in terms of priority, the

hypervisor keeps an extra field for each interrupt for
additional information. For example, a clock interrupt
should always have higher priority because this is how
the guest operating system does its timekeeping.

Another hardware features that is designed to help with
virtualization is the presence of a special interrupt, called
the maintenance interrupt. The purpose of this interrupt is
to address scenarios where the hypervisor wants to inject
more interrupts than available list registers or when a special
action needs to be performed when a certain virtual interrupt
is handled. In such situations, the hypervisor enables the
maintenance interrupt which when asserted will trigger a world
switch to the host. The hypervisor is then free to execute the
action it deems appropriate.

VI. TIMER VIRTUALIZATION

The timer is essential for any operating system: without
it, there could be no process scheduling in the context of
preemptive scheduling. Operating systems also use a timer for
periodic tasks, either as a functionality offered to user space
processes, or for internal purposes. It is necessary for a virtual
machine to have access to a virtualized timer in order for the
guest operating system to function properly.

A. The Generic Timer

The timer provided by the Armv8 architecture is called the
Generic Timer. The implementation actually consists of at least
two different timers, up to seven [12]. A system can have a
secure physical timer, a non-secure physical timer, which we
will call simply the physical timer, a virtual timer, physical and
virtual non-secure EL2 timers, and physical and virtual secure
EL2 timers. For the purpose of virtualization, we will focus

our attention on the timers that a regular operating system uses,
the physical timer, which counts the passing of real time, and
the virtual timer, which counts the passing of time from a fixed
offset.

The host operating system needs to use a timer exclusively;
it is not desirable for a virtual machine to slow down the host.
bhyvearm64 assigns the physical timer to the host and the
virtual timer to the virtual machine currently running on the
CPU core for the following reasons:

• Because the virtual timer counts time from a fixed offset,
a guest running inside a virtual machine can be tricked
into thinking that the timer started at the same time as
the virtual machine.

• FreeBSD [21] and Linux [22] prefer choosing the virtual
timer over the physical timer when they are both present
and virtualization is not active, which is always the case
in a virtual machine with no nested virtualization support.

• The Armv8.0 architecture provides a mechanism to emu-
late the physical timer by trapping reads and writes; there
is no such mechanism for the virtual timer.

B. Virtual Timer Virtualization

Timer interrupts are extremely time sensitive. Timer inter-
rupts come at regular intervals (the FreeBSD kernel configures
the timer to fire once every 1 millisecond) and because they
are so frequent it is extremely undesirable to spend too much
time servicing the interrupt. That time can be used instead to
execute other tasks. The same is true for the virtualized timer:
the less time the hypervisor spends emulating a timer, the more
CPU time a virtual machine has at its disposal before the next
interrupt.

To achieve minimal overhead for injecting timer inter-
rupts, bhyvearm64 assigns the virtual timer component of
the Generic Timer directly to the virtual machine. The guest
operating system is free to configure the timer as it sees fit,
without any intervention from the hypervisor. However, virtual
timer interrupts still need to be managed by the hypervisor.
This is necessary because according to Popek and Goldberg’s
control property [8], the host must always be in control of
the hardware, and this also means controlling the delivery
of interrupts. There is no hardware mechanism for selecting
which interrupts get redirected to the virtual machine. When
a guest is running, all interrupts are routed to the host, which
will choose which of them will be presented to the virtual
machine.

By their nature, interrupts are asynchronous; they can come
at any point in time regardless of the program that the
processor is executing. This also applies to the virtual timer:
a virtual timer interrupt can fire when another host program
is running on the CPU instead of the virtual machine that
programmed the timer. The virtual timer requires a mechanism
for identifying the virtual machine that programmed it before it
fired. To achieve this, we have modified the machine dependent
part of struct pcpu to save a pointer to the last virtual CPU
that ran on the core, as shown in Listing 1. The virtual CPU
is changed each time a different virtual processor is run by
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the machine-dependant part of bhyvearm64 and set to NULL

when that machine is destroyed.
The correct usage of the virtual timer also requires consider-

ing the case when two distinct virtual machines are sharing the
same physical core and thus using the same virtual timer. It is
important to note that in this context, “sharing” means the CPU
execution is alternating between the two virtual machine. The
virtual machines most likely started at different times, and their
virtual timer offsets will reflect that; most importantly each
will set the timer to fire at different moments in the future. To
account for this scenario, when switching virtual machines, it
is necessary to save the virtual machine timer state and restore
the state of the virtual machine that is replacing it.

Listing 1. struct pcpu

#define PCPU_MD_FIELDS \
u_int pc_acpi_id; \
u_int pc_midr; \
uint64_t pc_clock; \
void *pc_vcpu; \
pcpu_bp_harden pc_bp_harden; \

char __pad[225]

There is one other important aspect of timer virtualization
that needs to be addressed: what happens when the virtual ma-
chine is running behind timer interrupts? We have experienced
this situation when running bhyvearm64 on the Foundation
Platform simulator [23] with multiple virtual machines on the
same (simulated) Armv8.0 CPU. For bhyvearm64 we have
chosen a conservative approach in order to prevent the guest
kernel from spending too much of its CPU time handling timer
interrupts. When a virtual timer interrupt is asserted, we don’t
inject the interrupt in the guest unconditionally, but instead
we check if another timer interrupt is active. This can happen
in the interrupt handler, after the guest enables the timer and
before it signals the end of interrupt, events that are shown in
Fig. 3. In this case, we save the new interrupt in the interrupt
buffer and we inject it next time we perform a world switch.
Because world switches occur at least once every host tick,
the guest will have lost at most one full host tick.

C. Physical Timer Emulation

We have discovered that FreeBSD and Linux prefer using
the virtual timer when it is available. However, there is nothing
stopping an operating system from choosing the physical timer
over the virtual timer. Because bhyvearm64 lets the host have
control over the physical timer, for physical timer virtual-
ization we have chosen a trap-and-emulate approach. This
is achieved by setting the CNTHCTL EL2.EL1PCEN and
CNTHCTL EL2.EL1PCTEN bits, which cause all accesses
to the physical timer to be trapped to the hypervisor.

Fig. 3 shows the steps the FreeBSD kernel executes when
handling a timer interrupt. To get the interrupt number, the
Interrupt Acknowledge Register (IAR) is read. The interrupt
number is the number programmed in the List Register.
This changes the interrupt state from pending to active. The
kernel disables the timer by writing to the CNTP CTL EL0

Fig. 3. Timer Usage

register, which causes a trap to the hypervisor where the
hypervisor does in-kernel emulation. As a result of the write,
the hypervisor disables all pending timer alarms for the guest.
The guest programs the timer for the next alarm, and we save
this value. We don’t program any alarms to inject an interrupt
because the timer is still disabled.

Only after the guest enables the timer with another write to
CNTP CTL EL0 we trap to the hypervisor and program an
alarm at the time specified by the guest by using the FreeBSD’s
callout API. To end the handling of this interrupt, the kernel
writes to the End Of Interrupt Register (EOIR), which marks
the interrupt as inactive in the List Register. The List Register
that held the interrupt is now available to be used for injecting
another interrupt.

VII. FUTURE WORK

bhyvearm64 is in the early stages and our main goal
moving forward is to integrate it with the FreeBSD oper-
ating system. To this end, we are pursuing three different
approaches: splitting the existing bhyve implementation into
machine independent (MI) and machine dependent (MD) code,
improving user space device emulation support and improving
the hypervisor.

The arm64 vmm module duplicates code from the x86
bhyve implementation. It is obvious that, at the very least,
the vmm device code should be very similar between the two
architectures. This also applies to the user space components
of bhyvearm64, because much of the libvmmapi ioctl wrappers
and device emulation code should be shared. This issue was
also raised during the review process for the Armv7 version
of bhyve [24].

We are currently working on separating the machine inde-
pendent from machine independent code and we have started
with libvmmapi [25]. We will continue with the rest of the
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user space utilities, before turning our attention to the kernel
module.

At the moment, bhyve for arm64 has support for virtio
devices and bvmconsole, which is a development console. This
is inadequate for proper virtual machine management. We plan
to emulate the Intel 16650 UART and a CD-ROM device. The
UART will make interacting with the virtual machine faster,
and the emulated CD-ROM will make it possible for the user to
install a FreeBSD operating system inside the virtual machine.

The Armv8.0 virtualization model was intended for type
1 hypervisors, and this has the unfortunate effect of making
type 2 hypervisors not only more complicated from a soft-
ware perspective, but also slower. Better support for type 2
hypervisors was added in Armv8.1 under the name of Virtual
Host Extensions (VHE) [12]. KVM on Linux implements VHE
and this approach has led to better performance compared
to Armv8.0 virtualization in all scenarios [16]. Implementing
VHE brings the added advantage of noticeably reduced soft-
ware complexity for the hypervisor. This reduced complexity
will make our next goal easier to achieve: adding Symmetric
Multiprocessor Support (SMP) support to the virtual machine.
Machines with one CPU are rarely seen today, and we plan to
make it possible for a virtual machine to use multiple virtual
processors.

VIII. CONCLUSIONS

Operating systems rely on interrupts to communicate with
input/output devices. It is therefore necessary for modern
hypervisors to implement interrupt virtualization. bhyvearm64
abstracts Arm’s Generic Interrupt Controller version 3 into a
virtual interrupt controller by using a multifaceted approach
to virtualization. bhyvearm64 takes advantage of hardware
features to achieve minimum overhead by enabling the virtual
CPU interface. For the seldom accessed, memory-mapped
components of the GIC we make use of translation faults to
emulate the corresponding reads and writes.

Timers are essential for modern computers because, among
other things, they make multiprogramming possible. The first
device that uses the virtual interrupt controller is the virtual-
ized Generic Timer, which provides the virtual machine with
timer interrupts. bhyvearm64 virtualizes both hardware timers
that are part of the Generic Timer. A guest running in a virtual
environment is allowed to take full control over the virtual
timer. Physical timer accesses are emulated using a trap-and-
emulate approach, where the timer state is a software construct
part of the in-memory virtual machine state.
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Abstract—As more complex tasks are delegated to distributed
servers, virtual machine hypervisors need to adapt and provide
features that allow redundancy and load balancing. One such
mechanism is the virtual machine save and restore through sys-
tem snapshots. A snapshot should allow the complete restoration
of the state that the virtual machine was in when the snapshot
was created. Since the snapshot should encapsulate the entire
state of the virtualized system, the guest system should not be
able to differentiate between the moment a snapshot was created
and the moment when the system was restored, regardless of
how much real time has passed between the two events. This
paper will present how the time management and block devices
are saved and restored for bhyve, FreeBSD’s virtual machine
hypervisor.

I. INTRODUCTION

Virtual machines can be used by extremely powerful sys-
tems (e.g., server farms) to more efficiently split resources be-
tween users, or run a variety of compatible operating systems
without specifically installing one directly on the hardware
system. These mechanisms are employed to reduce admin-
istrative complexity and better automate processes. Since a
virtualized operating system is expected to still run as any
other, tasks that depend on timer functionality and clock
measurements are still expected to run with enough precision
so results are not skewed over time.

This article refers to any system that allows running virtual
machines as host, and the operating system running on virtu-
alized hardware as guest. Since the host is responsible with
managing the system resources, and therefore must not have
its functionality hijacked by a badly behaving guest, a hyper-
visor (also known as virtual machine manager) is required to
allow the guest systems access to hardware resources without
impacting the host.

In some circumstances (e.g., the host will have to be stopped
or if the host becomes over encumbered), users may want
to stop the virtual machine, and potentially even move it to
another system to continue work. This is achieved by creating
a snapshot of the virtual machine and then restoring the virtual
machine from the checkpoint.

A. Timers and Clocks

In order to perform periodic tasks, an operating system has
to measure time in some manner, and, if the hardware permits
it, request that an interrupt is sent when an interval has passed.

Regardless of their exact function, a periodic task is a routine
that will have to be called at (or as close as possible) a set
interval.

For example, the basic Unix sleep command can be used
to perform an operation every N seconds if sleep $N is
called in a script loop. Since it is safe to assume that all
modern processors have hardware timekeeping components
implemented, sleep will request from the operating system
that a software timer (i.e., one that is implemented by the
operating system as an abstraction [1]) to be set for N
seconds in the future and will yield the processor, without
being rescheduled, until the system “wakes” it. The process
“waking” is automatically done when the time has elapsed,
and the process will be rescheduled to run by the operating
system since it no longer waits for external events (in the case
of sleep, it will usually simply end when the timer is done).

Considering that the virtual machine must not lose any
functionality, time sensitive tasks should not be impacted
either. More specifically, this implies that if a task ran in the
virtual machine should end N seconds after it was created, it
will expire N-X seconds after the virtual machine was restored
from a checkpoint, if that checkpoint was created after X
seconds.

Note that some tasks may be affected even when the virtual
machine behaves as expected after a restore. For example,
network communications may be timed out by the other end,
even if from the guest’s point of view the packets are expected
to arrive well within the allotted time frame.

B. Block devices

A block device [2] is a permanent storage device that
imposes access to data using a fixed width. A commonly used
size is 512 bytes, equivalent to the length of a sector of a hard-
disk drive (HDD). Reading or writing data to such devices
requires sending requests of size that is a multiple of that
size.

As with hardware systems, a virtual machine requires a
virtualized block device as permanent storage to install the
operating system, as well as other software. Similar to other
virtual machine managers, bhyve [3] uses special files stored
on a physical drive that act as storage medium for the virtual
machine. The files are kept open by a part of bhyve and
read/writes are performed in these files in stead of directly
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on the block device (i.e., the file will ultimately be stored on
a hardware device, using the abstraction layers of the FreeBSD
kernel).

At the time this paper is written, bhyve only supports raw
disks (i.e., data is stored without being compressed, and no
extra features, such as copy-on-write, are available).

As with timers and clocks, the state of block devices needs
to be correctly saved to avoid the corruption of the file
systems used by the guest. Failing to do so, either by losing
some requests received from the guest, or failing to send
notifications when the operations have finished may result in
the guest having an inconsistent view of the data on the disk,
or corrupted data. Both scenarios can lead to damage to data
and systems with bad behavior.

The following sections are split as follows:

• section II talks about how the timers and time measuring
circuits work, how they are virtualized, and the previous
state of the save and restore mechanism.

• section III presents how AHCI compatible block devices
are virtualized

• section Iv shows the state of the overall save and restore
feature of bhyve

• section V focuses on the improvements to the snapshot
mechanism our work has achieved.

• section VI shows the results obtained after successfully
restoring time components and virtualized AHCI compat-
ible block devices on systems with Intel processors.

• section VII draws some conclusions and talks about
future work on the save and restore feature for bhyve
[3].

II. TIME MANAGEMENT VIRTUALIZATION

Timers are hardware resources used by the operating system
for synchronization. Usually, the timers have internal counters
that are incremented or decremented to measure time passage.
Depending on how often the counter value is changed timers
have a measurable resolution. The resolution is a measure of
how good a timer is, and more precise timers are commonly
more used when available, and unless tasks only need a rough
estimation of time.

Clocks are time measuring circuits that can be used by an
operating system to precisely measure wall clock time (i.e.,
real time). A clock uses an internal clock counter that is
incremented by a monotonic clock signal. Using this value,
and knowing how often it is incremented (i.e., the clock
frequency), software can measure how much time has passed
since the clock was reset.

In bhyve [3], the following timers and clocks are of partic-
ular interest:

• Local Advanced Programmable Interface Controller [4]
(known as Local APIC, or LAPIC).

• High Precision Event Timer [5] (known as HPET).
• Time Stamp Counter [4] (known as TSC).

A. Timer: LAPIC

The Local APIC described in the Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual Vol. 3A [4], Chapter
10, is a per-CPU programmable interrupt controller (i.e.,
aggregates multiple sources of interrupt and delivers them to
a specific CPU core) that is equipped with an internal timer.

The LAPIC’s timer is a software programmable 32-bit timer
that can be used to time events and system operations. The
timer settings are split among four registers:

• Divide Configuration Register.
• LVT Timer Register.
• Initial Count Register.
• Current Count Register.

The Divide Configuration Register is used to configure the
rate at which the current counter value will be decremented.
Possible divider values range between 1 and 128 (inclusively),
in powers of two. The set value is used by a circuit to reduce
the processor’s bus clock by the set factor (e.g., the timer’s
frequency will be half that of the bus clock, when the divider
is set to use a factor of 2).

The LVT Timer Register can be used to set the timer in
either periodic, or one-shot mode. Periodic mode means that
the timer will rearm itself after expiring. In one-shot mode the
timer will remain stopped after firing once. The register also
determines which interrupt will be delivered to the processor.

Current Count Register and Initial Count Register are used
together. When the Initial Count Register is set, its value
will be copied to the Current Count Register. At every clock
cycle of the timer, the value in the Current Count Register is
decremented. When the value reaches zero, an interrupt is sent
to the processor. If the timer is set to run in periodic mode,
the value of the Initial Count Register is copied again and the
cycle restarts. Setting the Initial Count Register to 0 will stop
the timer. Figure 1 shows the workflow of the LAPIC timer.

To virtualize the Local APIC, bhyve traps access to the
memory mapping of the device and updates the internal device
state if required. Whenever the timer Initial Count Register is
programmed, or a periodic timer expires, a callout [6] is set
by the virtual machine manager, based on its internal state (i.e.,
the values of the four aforementioned registers) to program a
timer on the host. When the timer expires, an interrupt is sent
to the guest to signal that the time is up. In the case of periodic
timers, another timer is set, and the cycle repeats.

Timer deadline for callout is computed as a function of
system uptime, as required by the interface. More specifically,
the timer frequency is computed as the fraction between the
predefined value of frequency and the value of the divider.
Since the timer is programmed using relative time (i.e., how
much time should pass since it is programmed until it expires),
when the Initial Count Register is set, simply adding the
current system uptime with the product of timer frequency
and the set counter will give the time when the timer should
expire.
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Fig. 1. Local APIC timer workflow.

B. Timer: HPET

The High Precision Event Timers [5] are hardware timers
developed by Intel for their processors. The timers use a 64-
bit main counter that is incremented and an implementation-
defined number of timers, with a minimum of 3.

Functionally, the timers use comparators to see when the
main counter has reached a certain value. The value used for
comparison is stored in a “match” register that can be either 32
or 64-bit wide. The value of the main counter is compared with
the reference value using N-bit (with N being either 32 or 64,
depending on the implementation) comparators and whenever
the value compared matches the value of the value of the
counter, an interrupt is generated.

The timers can function in both one-shot and
periodic modes. In periodic mode, the comparator
value is set to value(base_counter) +
value(comparator_register), so a new interrupt is
sent every value(comparator_register) ticks.

The frequency of the HPET timer can be much lower than
that of the LAPIC (i.e., the specification document [5] imposes
that it should be at least 10MHz, while the LAPIC runs at the
same frequency as the processor, unless divided), so it is less
precise.

Since the HPET has the main counter, a monotonically
incremented counter value, it can also be used as a rougher
granularity clock source.

Figure 2 is a representation of the logic used to implement
one of the timers in HPET.

HPET virtualization relies on device memory mapping to
identify register access and update internal device state. HPET
timers are emulated using callout [6] structures, one for

Fig. 2. HPET timer logic.

each timer. The guest can set and get values for the main
counter and timer counters. For virtualization purposes, the
value of the main counter is set once, and reading it will
simply add the value set by the guest and add it to the time
elapsed since it was set divided by the frequency. Using this
mechanism, the value of the counter can be precisely computed
without using periodic timers to increment it.

Each timer is virtualized by programming a callback struc-
ture to the time when it should expire. However, since the
timers programming relies on absolute values, rather than
relative, the “current” value of the main counter will have to be
determined and subtracted from the value of the comparator
to obtain a relative time in the future when the timer must
expire. Similar to the way LAPIC timers are set, the moment
in the future the timer will expire is computed as the sum
between the current time and the number of relative “ticks”
of the HPET timer multiplied by the its frequency.

For periodic timers, after the timer interrupt is sent to the
guest, another callout will be set to expire after the another
time period has passed.

C. Clock: TSC

The Time Stamp Counter, as described in Section 17.15
of the Intel 64 and IA-32 Architectures Software Developer’s
Manual Vol. 3A [4] is a per-CPU internal counter that is
incremented at the same rate, regardless of CPU frequency
changes. The constant rate means that TSC can be used as a
wall clock timer (i.e., measures real time, as opposed to how
much a process has been running on the CPU). It is possible to
adjust the value of the Time Stamp Counter using the wrmsr
special instruction with appropriate offset.

The value of TSC can be read using the rdtsc instruction
without requiring special privileges in the operating system
(e.g., for Unix systems the command will not run as root).
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Using this mechanism, software can determine how much time
has passed from a reference point by computing the absolute
difference of the two values.

An extension to TSC, called Invariant TSC, will guarantee
that the value of the TSC counter will continue to increment
while the system moves to power saving states. However, this
behavior is not supported on older CPUs, so TSC may not be
as stable as HPET on all systems.

TSC virtualization relies on the hardware extensions pro-
vided by modern Intel and AMD processors. This article
refers to Intel specific extensions, but AMD offers very similar
functionality.

Since the value of TSC is directly provided by the processor,
its value is shared between host and guest. Because of this, the
guest cannot be allowed to directly change its value; in stead,
the virtualization extensions provide two special registers: TSC
offset and TSC multiplier, as described in Section 25.3 of the
Intel 64 and IA-32 Architectures Software Developer’s Manual
Vol. 3A [4].

Considering that bhyve does not use the TSC multiplier, the
TSC offset is used when the guest attempts to access the TSC
register as follows:

• write - the TSC offset is set to the difference between
the value desired by the guest and the current host TSC
value.

• read - the sum between the value of the TSC offset
register and the current host TSC is returned.

III. BLOCK DEVICES VIRTUALIZATION

The Advanced Host Control Interface (AHCI) [7] is a PCI
class device used to transfer data between system memory
and SATA devices. Using the AHCI device, the system can
enqueue multiple requests to a single device, with the possi-
bility to aggregate requests to reduce disk wear and improve
performance.

AHCI can connect multiple hardware devices to the system
CPU, offloading the CPU workload through DMA trans-
fers. By offloading the AHCI device, the system can asyn-
chronously send transfer commands to I/O devices. At most
32 ports (i.e., physical connections with other devices; more
than one device can be connected to a single port using port
multipliers). Each port must function independently from one
another.

By intercepting accesses to AHCI through memory map-
ping, bhyve [3] is able to identify when the guest is attempting
to access the virtual disk. The virtual machine monitor can
intercept guest memory accesses to detect when the guest
attempts to program the AHCI controller for data transfers.
Since requests are in a standard format the host can then
decode the requests sent by the guests, by interpreting the
commands sent.

Device virtualization implements asynchronous operation
by offloading requests to additional worker threads with com-
mon work queues. Currently, bhyve uses eight workers in a
generic block interface shared with the VirtIO [8] block device.

The device is emulated by translating the interpreted com-
mands into I/O requests that can be executed on the host side.
To emulate the AHCI’s multiple command capabilities, reads
and writes can be combined using FreeBSD’s readv [9] and
writev [10] system calls. Through the use of I/O vectors (as
described by the manual pages of both readv and writev),
numerous data transfers between the disk and guest memory
can be executed using single system call, reducing device
emulation complexity.

It is worth mentioning that using I/O vectors is only possible
because the guest’s memory is mapped directly into host
memory space, such that data access to a specific memory
address will be seen by the guest as if the device has completed
the requests.

IV. RELATED WORK

Bhyve [3] already featured a partially functional save and
restore feature capable of resuming a guest running FreeBSD
from a snapshot. The guest ran using VirtIO [8] network and
block devices, and tests showed that it was able to connect to
the internet, continue running timers, and read data on the disk
after being restored. Obviously, testing advanced features like
timers, network, and disks, would not have been possible if
the guest CPU and memory were not properly restored before.

A regular test script to check if the internet connection
and timers work correctly is shown in listing 1. If the script
continued running properly after restoring the virtual machine,
both the network connection and timers would have to work
properly. Since sleep relies on a timer to finish its work
(and so the contents of the while loop would execute),
general timer misbehaviour would easily be spotted, since the
command would not finish in time.

whi le s l e e p 1 ; do
p ing −c 1 8 . 8 . 8 . 8

done
Listing 1. Network and Timers testing.

To test disk functionality, simply being able to read a file
from the virtual disk without any errors, and without visible
data corruption was considered enough.

Since the tests performed on a FreeBSD guest were usually
successful, the devices were considered functional. However,
after changing test parameters, such as the guest operating
system and attempting to restore after the host was restarted,
a number of issues started to become apparent.

Linux and Windows, as opposed to FreeBSD do not com-
municate with the host directly through a serial console, but in
stead use a frame buffer where they output a graphical inter-
face, seen as either a classical CLI or GUI, and receive input
from emulated xhci (i.e., USB) mouse and PS/2 keyboard. To
properly communicate with the guest, these interfaces (frame
buffer, xhci and PS/2) also had to be saved and restored, but
their implementation is outside the scope of this paper and
will be considered as de-facto functional.

The Linux guest had mostly the same functionality as the
FreeBSD guest, but when running dmesg after a VM restore,
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multiple filesystem operation errors on log files were dis-
played. This showed that despite being seemingly functional
for files that were unchanged near the time a checkpoint was
created, frequent background file I/O lead to data corruption.
By using the same disk image multiple times to suspend and
restore the virtual machine (as a special case of snapshot, that
stops the guest after the snapshot is taken), after a few (around
4-5) iterations the disk usually became corrupted enough to
render the kernel or core utils binaries unusable.

Improper functionality of the block devices was caused by
how handling of incomplete requests was done. Before the
snapshot of the virtual machine is created, the guest CPUs are
frozen, and thus any interaction such as notifications that disk
operations have finished were lost.

Windows guests running Windows Server 2016 (both with,
or without, the full GUI) were completely frozen after restore.
The issue with Windows, as we have assessed it, is that the
user interface is directly linked to the system functionality, so
if the interface is unable to properly update, applications with
any form of interface would also stop working.

Moreover, a seemingly inconsequential difference, reboot-
ing the host, would cause a kernel assertion to fail, and so the
host system would crash whenever trying to restore a virtual
machine. This was caused by the fact that the virtualization of
some devices (e.g., HPET) uses the callout interface which
relies on system uptime. Attempting to restore the value of the
device state variables that kept track of system uptime usually
meant that they would usually be reset to an ”earlier” time
(i.e., the host system at restore time had less uptime than it
had when the snapshot was created), and an assertion meant
to make sure the timer expiry date would not go backwards
would fail, crashing the host.

The referenced behavior can be seen in listing 2, where
the KASSERT instruction fails. vhpet->countbase_sbt
is a variable set when the device emulation starts to the (then)
current system uptime. Simply restoring it to its previous value
can mean that its value is higher than the value of now (actual
system uptime), thus resulting in a negative value of delta.

v a l = vhpet−>c o u n t b a s e ;
i f ( v h p e t c o u n t e r e n a b l e d ( v h p e t ) ) {

now = s b i n u p t i m e ( ) ;
d e l t a = now − vhpet−>c o u n t b a s e s b t ;

KASSERT( d e l t a >= 0 , ( ” v h p e t c o u n t e r : ”
” up t ime went backwards : ”
”%#l x t o %#l x ” ,
vhpe t−>c o u n t b a s e s b t , now ) ) ;

v a l += d e l t a / vhpe t−>f r e q s b t ;
i f ( nowptr != NULL)

∗ nowptr = now ;
}

Listing 2. HPET Virtualization Assert.

V. SAVE AND RESTORE DEBUGGING & IMPROVEMENTS

A. Time Management

Before being able to debug the more complicated issues
with bhyve, the issue with the HPET virtualization that was
shown in section IV had to be addressed.

Please note that issues described in this section refer to the
manner a virtual machine behaved when restoring its state
shortly after a host system reboot, when the system uptime is
small. The virtual machine in all test cases is suspended when
the snapshot is created, instead of having it continue running,
since the disk currently does not support any copy-on-write
mechanisms (e.g., qcow2, or similar).

Since the reference value used by HPET could not be
restored as-is, if the timer was enabled prior to the virtual
machine snapshot save, it would be reset using the current
system uptime. While this did not solve any issues related
to the guest’s stability, it did stop the virtual machine from
crashing the host, and allowed us to further guest behavior
inspection.

While the host would no longer crash, the guest operating
system did not work as expected: the sleep 1 command
did not finish after one second as expected, but rather after a
seemingly random interval (the exact amount of time was not
always the same). Moreover, trying to read the system time
using date in this interval always returned the same value
regardless of how much time had passed since the guest was
restored. The reason for the inconsistent intervals after which
the guest would resume functioning was caused by the fact
that its timers were not restored.

As described in section II, the Local APIC virtualization
relies on the callout [6] system to set a timer to expire
Initial Count Register units (multiple of a base clock) into the
future. At any point, a non-virtualized LAPIC keeps track of
the amount of time until the timer must expire using the Cur-
rent Count Register. Consequently, the snapshot mechanism
saves the value computed for the CCR when virtual machine
state is committed to disk (i.e., to not keep a separate counter
that is decremented at a set frequency, the value is computed
as a function of the value of the ICR and how much time has
passed since the timer was set). When restoring the virtual
machine, the timers that were set before the snapshot was
created are reprogrammed using the value of the previous
CCR.

Correctly saving and restoring the LAPIC timers resulted
in a more stable, albeit incorrect, guest functionality. To be
more precise, the system uptime still refused to update, but
the intervals became more stable. Since the length of such
intervals seemed close to the amount of time the host ran
before the snapshot was created, the Time Stamp Counter and
HPET were approached.

For the virtual machine, unless explicitly offset, the per-
ceived value of the counter is the same as the one on the
physical host. This means that if the virtual machine is restored
after a system reboot, the value of the counter it reads may
be smaller compared to a value it read before the snapshot
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was created, because the reset value for TSC is 0. In turn, this
implies that trying to determine how much time has passed by
subtraction, using a value read before the snapshot, and one
read after the restore would result in integer underflow (i.e.,
the value of TSC is a 64-bit unsigned integer).

TSC virtualization is done entirely by the virtualization
extensions provided by the CPU manufacturer, and relies on
their specific implementation. As such, the save and restore
feature was added as a CPU-specific functionality, currently
implemented for Intel CPUs only.

To keep track of both the offset set by the guest and the one
required to compensate for system uptime differences between
save and restore, two offset variables have been added for each
virtual CPU: guest_off and restore_off.

The guest_off variable, which is used to keep track
of the offset imposed by the guest is set when the wrmsr
instruction with the proper offset is intercepted.

For the second offset variable, restore_off, the value
of the counter is saved when the snapshot is created, and the
offset is computed by subtracting the value of the counter at
restore time from the value that was previously saved. If a
new snapshot is created from a restored virtual machine (i.e.,
it runs as a result of the restore operation), the values of the
restore offsets are added together.

By adding the values of guest_off and restore_off,
and setting the result as offset for the Time Stamp Counter,
the guest is not affected by the snapshot operation.

Despite no longer being stuck reading the same value for
the time / date, the guest did not run as expected. When the
guest finished restoring, a message could be seen in dmesg
saying that TSC was an deemed as unstable and replaced with
HPET.

Linux uses different counters as clocksources, including
the HPET main counter and TSC. Since TSC is considered
a precise clocksource, it is usually preferred over the more
coarse alternatives (e.g., HPET). However, since the behavior
of TSC is not guaranteed to be the same on all systems,
less precise, but stable clocks are used to check if TSC
has deviated, or not. If intervals measured using the two
clocksources differ by an amount greater than a threshold, the
next best source is selected to replace TSC.

In this case, however, TSC was the clock running properly,
while HPET was incorrectly restored. To snapshot HPET, the
value of the main counter is saved and used as offset after the
restore, and added to the value of the current counter.

B. Block Devices

To solve the issues with losing notifications by sending
them to a frozen host, when a snapshot request is processed,
the emulated devices are paused before freezing the guest
CPUs. Pausing is handled by the same thread that handles the
snapshot, so synchronization with the worker threads is done
to ensure that the worker threads will not undertake any more
work while the device is paused, and the pause functionality
will not end until all workers have been paused.

By pausing the devices while the virtual machine’s CPUs
are unfrozen means that the guest will not miss notifications
for completed requests.

Furthermore, because the workers are unable to complete
any tasks while the device is paused, new requests sent by
the guest are also saved and restored as part of the snapshot
process.

VI. RESULTS

The stability of guests has been greatly improved as a
result of fixing the issues of time management and disk
virtualization.

Since the virtual disk is only implemented to use raw disks,
and no mechanism to take disk snapshots is in place, the virtual
machine tests are only performed on suspend and restore
scenarios. If the guest would instead be allowed to run after
the snapshot is created, the state of the virtual machine disk
would not be the same as when the snapshot was created.

A. Linux Guest

The Linux guest performs properly after a restore in the
following scenarios, where the virtual machine was suspended
and restored while the respective operation is underway:

• sleep for a predefined interval.
• copy large files in the guest.
• copy files from a guest NFS shared directory to the host.

The sleep test scenario is meant to prove that the errors
with timekeeping have been solved. This is the simplest test,
since it does not rely on any other device functionality to be
done - the binaries do not need to be read from disk after the
restored since (if the virtual machine has enough memory) they
are mapped into memory. Also, other devices like network are
also not required to work since all operations are local.

Creating a copy of a larger file in the guest tests the virtual
disk save and restore. As an example, a 4GB file with random
data is created using the command in listing 3.

dd i f =/ dev / urandom of = t e s t . r e f bs =1G \
c o u n t =4

Listing 3. Creating a file with random data

The testing of the disk can only be currently done using
AHCI virtualization, since the VirtIO block device does not
have the pause and resume functionality implemented. If the
virtual machine is suspended while the copy operation is
underway and the disk loses any requests, the copy of the
file differs from the original. An observed result is that if the
requests are not restored, some chunks of the file will only
contain bytes of value 0.

The last experiment tests mostly timers and the network.
Since the NFS protocol accepts a large enough system down-
time from any of the ends, the guest can be suspended while
a file is copied from the guest to the host, and the operation
must resume when the guest is restored. As is the case with
the other file test, large files with random contents are used
to assess performance because any inconsistencies are easily
spotted.
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As a side note, the log file errors seen in dmesg described
in section IV no longer showed after safely restoring the disk.

B. Windows Guest

For the Windows guest the following test scenarios have
been considered:

• interaction with the guest is possible after restore.
• sleep for a predefined interval.
• copy files from a guest samba (SMB) shared directory to

the host.

The first point should, obviously, be a prerequisite for
testing any other advanced functionality, but the graphical user
interface was completely frozen after a restore, due to errors
in the way time management was saved and restored. Since
Windows did not provide much information about the reason
it didn’t work, all debugging was done on Linux, and thus,
Windows was simply a ”bonus” that confirmed that timers
and clocks are working.

For the second and third scenarios, the implications and
testing methodologies are similar to those presented for Linux,
with the exception that SMB has a smaller window for system
downtime. As a result, rsync may show an error when the
transfer reaches 100%, but the copied file proves to be identical
to the source.

VII. CONCLUSIONS AND FUTURE WORK

The virtual machines are more stable, and all three operating
systems of interest - FreeBSD, Linux and Windows are able
to run. However, a number of issues will be addressed:

• separate snapshot and migration code - the current imple-
mentation has mixed code for virtual machine snapshots
and warm migration (i.e., moving the saved data from
one host to another through a socket).

• the offset for TSC is unnecessarily split between two
variables - in case the guest sets the offset explicitly, the
offset should be computed relative to the current value of
TSC on the host, and discard the restore offset entirely.

• the offset used by HPET should be set to 0 when the
guest explicitly sets the value of the counter - the set
value should be used as the counter value, regardless of
whether the guest runs as a result of a restore or not.

• refactor the snapshot code - the generic code currently
iterates through all devices to check if it is used, so it
will be snapshot; additionally, most of the device-specific
code for save and restore is the same (i.e., fields are saved

one-by-one and in the same order, so the difference lies
in whether the snapshot buffer is written or read from).

• extend the block device pause and resume functionality
to the VirtIO block device

• add suport for TSC on AMD CPUs
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Abstract—When talking about servers and clouds, live mi-
gration is one of the most powerful tools that can be used to
manage resources that are abstracted by virtual machines due to
its small downtime. bhyve, FreeBSD’s hypervisor, does not have
a live migration feature implemented yet, even though it is a very
useful feature for a hypervisor.

This paper presents two approaches for implementing a live
migration feature for bhyve that use the FreeBSD’s virtual mem-
ory subsystem. The first one uses a Copy-on-Write mechanism
that cannot be implemented due to bhyve memory layout, and
the second one uses a dirty page detection mechanism.

I. INTRODUCTION

Cluster and grid solutions have become more important each
day, whether we talk about web servers or data centers. The
cluster and grid framework usually offers resources for the
clients by providing them access to certain virtual machines
that abstract the hardware resources.

The virtual machine migration is a powerful tool that is used
for load balancing or as a method to avoid data loss when one
of the cluster’s systems may become inaccessible in the near
future (e.g., partial hardware failure, the need to upgrade the
infrastructure). The migration process may be automated or
may be done manually by the system administrator.

One of the migration’s challenges is related to the guest’s
downtime: the more memory a guest has assigned, the more
it may take for the migration process to finish. One of the
fastest ways of migrating a virtual machine is by using the
live migration procedure and migrate a guest from one host
to another while it is still running.

bhyve [1] is a type 2 hypervisor implemented in the
FreeBSD operating system and can be used on Intel and
AMD CPUs systems that have support for virtualization.
Linux, FreeBSD and Windows are some of the guest operating
systems that can run in a virtual machine created with bhyve.

Unlike hypervisors such as VirtualBox, Xen, Hyper-V,
VMWare ESX, and KVM that have a live migration feature,
bhyve does not have one, even if it is necessary. In this
paper, we present a Copy-on-Write mechanism that can be
used to detect memory changes between live migration rounds,
but that cannot be used by bhyve due to a dual memory
layout implementation. Also, we propose a live migration
feature for bhyve that uses a dirty-bit mechanism to detect the
memory changes, and a save and restore mechanism feature
[2] developed for bhyve to migrate the guest CPU and devices
state.

This paper is split in eight sections. In Section II, we will
present some of the main concepts that are used to develop
the live migration feature for bhyve and for finding memory
differences between migration rounds. In Section III, we will
present a guest state save and restore mechanism and a cold
and a warm migration feature for bhyve that is based on
the save-restore procedure and that will be used in the live
migration development process. In Section IV, we will show
a Copy-on-Write approach for live migrating a guest memory
that led to the current implementation and the reason it cannot
be used in bhyve. In Section VI, we will suggest an algorithm
that is based on the dirty-bit mechanism to detect memory
changes. In the fifth section, the current status of the project
along with its results is presented. In Section VII, we will
present the future work that should be done to allow this
project to evolve. In the last section, we will draw some
conclusions for this paper.

II. STATE OF THE ART

A. FreeBSD’s Virtual Memory Subsystem

The Virtual Memory Subsystem is one of the most important
parts of an operating system since it manages the relationship
between the physical memory and processes. This subsystem
creates an abstraction layer between the software and the
hardware so that a process can see a contiguous memory
allocation space. Moreover, it ensures a level of security since
a process cannot access another process’s memory if the access
was not granted using special mechanisms such as shared
memory.

In the FreeBSD operating system, the virtual memory
subsystem is object oriented and has four main components
that are used to abstract the physical memory:

• struct vm_page – is the smallest virtual memory
representation entity and represents a virtual page. It is
mapped one-to-one with a physical memory page.

• struct vm_object – is a collection of struct
vm_page entities that have the same characteristics.
A struct vm_object entity represents an allocated
area of contiguous memory.

• struct vm_map_entry – is an entry into an address
map (represented by a struct vm_map object) that
place an struct vm_object entity or another address
map between a start address and an end address into a
process’s address space.
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• struct vmspace – is an entity that represents
the process virtual address space and points to a
struct vm_map that contains a list of struct
vm_map_entry entities. Moreover, it contains a link
to the physical page table (struct pmap) for the
represented process.

A struct vmspace entity is associated with each new
process that is created on the system. This entity contains
both a virtual memory mapping of the virtual pages and a
reference to the physical page table. For each of the process’s
contiguous memory regions with the same characteristics (i.e.,
same permissions and flags) a struct vm_map_entry
entity and a struct vm_object entity are created.

The Copy-on-Write (CoW) mechanism is used to optimize
the system’s memory usage and to rapidly create a new process
when the fork() function is called. When fork() is called,
the parent process’ memory is marked as copy-on-write which
means that the parent process and the child process share the
same memory pages until one of them tries to modify one
of the pages. Then, a page fault is triggered and the page
is duplicated such that each of the two processes have an
individual copy.

In FreeBSD, the Copy-on-Write mechanism is implemented
using shadow objects [3]. A shadow object is a struct
vm_object entity that is backed by another struct
vm_object entity. It may happen that the backing objects
can be another shadow object creating a list of shadow objects.

When a page from the shadow object is accessed, the page
is first searched in the shadow object and if it is not found
there, the page is searched in the backing object list. If the
page resides in a backing object and is accessed for a write
operation, then a copy of that page is added to the shadow
object. If the page is accessed for a read operation, the object’s
layout is not modified. In the case of a fork call, an object is
shadowed by two new objects: one for the parent and another
one for the child.

B. Guest Memory Management

In a bhyve, the guest address space is split into three main
components [4]:

• lowmem segment – this is the memory segment that is
mapped between 0GB and lowmem limit size which is
set at 3GB [5] at the time this paper was written. If the
guest assigned memory size is smaller than the lowmem
limit value, then the segment size is equal to the guest
memory size. Otherwise, it is equal to the lowmem limit
value.

• PCI hole – this is a non-mapped memory region between
lowmem limit and 4GB (currently between 3GB and
4GB) that is used to access the devices through Memory-
Mapped I/O (MMIO).

• highmem segment – this is the memory segment that is
mapped starting from 4GB. This segment is equal in size
to the difference between the guest assigned memory size
and lowmem limit value, and it may not exist if the guest
memory size is smaller than the lowmem limit value.

In bhyve, the guest memory is allocated during initial setup
[5], where the user-space utility, bhyve, maps a contigu-
ous area that is then divided between the lowmem segment
and the highmem segment. Each of the two segments will
have a new object assigned in the bhyve user-space process
address space (a new struct vm_map_entry entry in
the process’s struct vmspace that will indicate the user-
land bhyve process address range in which the segment
was mapped). Then, in the kernel-space, the bhyve hyper-
visor, using the architecture dependent implementation for
the vmspace_alloc function from the struct vmm_ops
entity (a wrapper of architecture dependent functions), cre-
ates a new struct vmspace entity that will eventually
point to the same memory objects that are allocated for the
lowmem and highmem segments. However, the two struct
vmspace entities (the one for the bhyve user-land utility, and
the one that is allocated in the kernel) have different virtual
and physical mappings, the latter corresponding to the guest
address space layout that was previously discussed.

Fig. 1. Dual Guest Memory View - lowmem segment

In Fig. 1 the dual guest memory view previously described
for a bhyve virtual machine that has assigned 2GB of memory
is represented. The left side represents the guest memory
as it is mapped by the bhyve user-space tool and the right
side is the guest memory representation as it is seen by the
virtual machine itself. The same object that contains the guest
memory pages is referred by two struct vm_map_entry
entities. Each of the two struct vmspace entities have a
link to a struct pmap. Since the nesting paging feature
was introduced in bhyve [4], each physical mapping for the
amd64 architecture has a mapping of type PT_x86 for normal
mapping, or PT_EPT (for Intel Extended Page Table feature),
and PT_NPT (for AMD Nested Page Table feature) for guest
memory mappings.

The dual guest memory view represents a communication
mechanism between the host and a virtual machine. User-
space emulated devices (e.g., virtio, ahci, e1000) are running
in different threads and receive and fulfill requests from a guest
(e.g., reading or writing data on disk, receiving and sending
network packages).

The left side view from Fig. 1 displays what happens when
a request to read from disk is received by the host from the
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guest: the thread that emulates the disk interface from host
user-space (e.g, virtio-block, ahci) is reading the data from
disk and updates the guest memory by writing directly to it.
The right side view from Fig. 1 shows how the enities are
used when the guest accesses its memory and the information
is directly read from the guest’s struct vmspace entity.

C. Virtual Machine Migration

The virtual machine migration mechanism allows a user to
move a guest from one host to another. From literature [6] [7]
[8] [9] [10], the migration techniques can be divided into two
main categories:

• Non-live Migration - the guest is powered off or sus-
pended at migration time.

• Live Migration - the guest is running during the migration
process.

The Non-Live Migration technique is divided in two main
categories as well: cold migration and warm migration [7] [6].
The cold migration implies that the guest is powered off and
all its data (disk and auxiliary files) are moved to another
system. The warm migration procedure implies that a guest is
suspended, its state copied onto the destination, and then the
guest is resumed from the saved state.

Whereas in the cold migration case there are no restrictions
regarding the guest’s disk (because it is copied from one
system to another), for the warm migration procedure, the
disk image must be shared between the source and destination
hosts. In terms of performance, the warm migration technique
is faster than cold migration because of the fact that the disk
is shared among systems.

The Live Migration technique has the best results in terms
of migrated guest’s downtime because the virtual machine is
migrated while the guest is still running. The live migration
procedure [8] [9] [10] has two phases: a phase in which the
guest memory is migrated in rounds while the virtual machine
is still running, and a phase in which the guest is stopped and
the CPU’s and devices’ state are migrated to the destination.

Based on the method that is used in order to live migrate
the guest’s memory, there are two types of live migration [8]
[9]:

• Pre-Copy Live Migration [8] – The memory migration
is done in rounds. In the first round, all the guest pages
are copied to the destination. For each of the following
rounds, only the pages that were written between two
rounds are copied to the destination. After a number of
memory migration rounds or when a threshold number
of dirty pages is reached, the virtual machine is stopped
and the remaining dirty pages, together with the CPU’s
and devices’ state is transferred to the destination host
and the guest is started.

• Post-Copy Live Migration [9] – The memory is migrated
using a page-fault approach. In the first phase, the source
guest is stopped, the CPU’s and devices’ state is migrated
to the destination and the guest is started on the destina-
tion host. When a memory access occurs, a page fault is

generated on the destination, and then, the destination
requires the page that caused the page fault from the
source. To optimize the process, other pages will be
delivered with the required page as well.

While the Post-Copy Live Migration has the advantage that
the memory is transmitted a single time through the network,
a fall-back mechanism is hard to be implemented, as opposed
to the Pre-Copy Live Migration where if the migration process
fails, the guest will continue running on the source host.

III. RELATED WORK

A. Suspend and Resume a bhyve guest’s state

As presented in Section II-C, during the migration process,
a state save and restore procedure is needed: the guest’s state
is saved on the source host and restored on the destination
host.

A project for bhyve state save and restore is also developed
at University POLITEHNICA of Bucharest [2]. The project
[2] introduces a suspend/resume feature for bhyve. When the
suspend command is received, the bhyve process stops the
virtual machine, saves the guest’s state and its memory to disk
files and destroys the guest. When resuming a virtual machine,
the bhyve process restores the guest state based on the saved
information.

# Suspend bhyve g u e s t
roo t@hos t# b h y v e c t l −−suspend= f i l e . ckp \

−−vm=vmname

# R e s t o r e a g u e s t from c h e c k p o i n t
roo t@hos t# bhyve <b h y v e o p t i o n s> \

−r f i l e . ckp vmname

Listing 1. Suspend and Resume a bhyve guest

The Suspend request is sent to a bhyve guest by using the
bhyvectl tool with the --suspend option and a file name
for saving the data, as seen in Listing 1. Considering the code
snippet in Listing 1, during the suspend process, three new
files are created:

• filename.ckp - contains guest’s memory.
• filename.ckp.kern - contains guest’s devices and CPU

state.
• filename.ckp.meta - contains metadata related to the

saved devices and their offset in the filename.ckp.kern
file.

Aside from the guest memory, there are other three main
components whose state is saved during the suspend process:

• CPU state and related structures,
• Kernel devices such as VHPET (Virtual High Precision

Timer), VRTC (Virtual Real Time Clock), VLAPIC (Vir-
tual Local APIC), TSC (Time Stamp Counter).

• Userspace emulated devices (e.g., virtio-net, virtio-block,
uart, ahci, lpc, frame buffer, xhci).

The Resume request, as seen in Listing 1, uses the bhyve
tool with the -r parameter followed by the file name used
when suspending the guest state. The restore process creates
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a fresh virtual machine based on the given disk image and
updates its state and memory before the virtual CPUs are
started.

B. Warm Migration in bhyve

Based on the save and restore feature for bhyve presented
in Section III-A, a warm migration feature was added to
bhyve [12]. Using the same API to retrieve a guest’s state and
memory as the save and restore project, the migration feature
opens a connection between the source host and the destination
host and sends the guest’s state and memory through a socket.

As presented in Section III-A, the suspend/resume feature
does not provide a disk checkpoint mechanism, and therefore,
in order to warm migrate a bhyve guest, the same disk image
must be shared between the two hosts using a storage sharing
mechanism such as NFS (Network File System).

# S t a r t s o u r c e g u e s t
roo t@src# bhyve <b h y v e o p t i o n s> vmsrc

# S t a r t d e s t i n a t i o n g u e s t
# and w a i t f o r m i g r a t i o n
roo t@ds t# bhyve <b h y v e o p t i o n s> \

−R s r c i p , p o r t vmdst

# Migra te g u e s t
roo t@src# b h y v e c t l −−m i g r a t e = d s t i p , p o r t \

−−vm=vmsrc

Listing 2. Warm migrating a bhyve guest

In Listing 2 is presented an example of warm migration
usage. In order to warm migrate a virtual machine, a fresh
guest is started on the destination host using the bhyve tool
with the -R parameter followed by the host’s IP and the
listening port. The destination host waits to receive source
guest’s state. To send the guest’s state, on the source host,
the bhvyectl tool is used with the --migrate parameter
followed by the destination host and a port. After the com-
munication between the two hosts is established, the source
host is stopped, its state and memory is sent to the destination
host and if the migration is successfully completed, the source
guest is destroyed (otherwise, if an error occurs, the guest
will continue running on the source host). The destination host
receives the guest’s state and memory and based on the resume
state API [2], restores the guest and starts the virtual machine’s
CPUs.

IV. LIVE MEMORY MIGRATION USING A COPY-ON-WRITE

APPROACH

The memory migration is the core of a live migration
feature, and in the same time, is the most difficult part to
implement. As stated in Section II-C, the memory can be
migrated before [8] or after [9] starting the guest on the
destination host.

Considering the pre-copy live migration feature [8], the
same memory page can be migrated more than once, whereas

in the post-copy live migration approach [9], each page is
migrated only once. However, when the migration procedure
fails (e.g., network connection become unavailable), the post-
copy live migration approach needs to implement a fall-back
mechanism [9]. In the pre-copy live migration, when an error
occurs, the fall-back mechanism is ensured by default because
the guest continues running on the source host. Considering
this, we choose to implement a pre-copy live migration feature
for bhyve.

As presented in Section II-C, in a pre-copy live migration
approach, the memory is migrated in rounds and, each round,
the algorithm has to determine the pages that were dirtied since
the last round started. In other words, the procedure needs to
determine the changes that occured in the same memory area
between two moments in time.

The Copy-on-Write (CoW) mechanism can be used to
determine the memory differences that were made in a time
interval. As presented in Listing 3, in FreeBSD, to determine
the memory differences, the memory object can be marked
as Copy-On-Write. Then, the object and its shadow object
can be compared to determine what pages were modified. As
presented in Section II-A, when a write operation occurs in
a page that was not been dirtied since the initial object was
marked as CoW, a copy of that page is added into the shadow
object. Considering this, the shadow object contains only the
pages that were dirtied since the initial object was marked as
CoW.

1 VM OBJ = g e t c u r r e n t m e m o b j ( ) ;
2 SHADOW OBJ = s e t o b j c o w (VM OBJ ) ;
3 w a i t f o r r o u n d t o f i n i s h ( ) ;
4 pg = g e t pg (SHADOW OBJ ) ;

Listing 3. Determining memory differences using the Copy-on-Write

The Copy-on-Write approach presented in Listing 3 can
be used to determine the memory that can be migrated in
each round. The algorithm needs guest memory objects to
be marked as CoW before starting a new memory migration
round. In the next round, the pages that should be migrated
are represented by the shadow object pages.

However, due to the dual memory view presented in Section
II-B, the Copy-on-Write approach previously presented cannot
be used to migrate de virtual machine’s memory. In order
to mark a virtual memory object (the struct vm_object
entity) as Copy-on-Write, some flags (MAP_ENTRY_COW and
MAP_ENTRY_NEEDS_COPY) have to be set in the struct
vm_map_entry entity. However, as seen in Fig. 1, the
guest and the host have different struct vm_map_entry
entities to refer the same object.

If one of the struct vm_map_entry entities (from
guest side or from host side) is marked as Copy-on-Write,
the other struct vm_map_entry entity points to other
struct vm_object so the two sides will no longer have
the same view of the memory. If one of them writes in the
guest’s memory (such as virtio devices) the page will be copied
into the shadow object and the other side will not see the
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Fig. 2. Dual Guest Memory View - lowmem segment - bhyve’s
VM MAP ENTRY is marked as COW

changes. This leads to communication errors between the host
and the guest that will eventually crash the virtual machine.

In Fig. 2, it is shown the virtual memory layout after
the guest’s side struct vm_map_entry that contains the
memory object was marked as copy-on-write.

This approach is the one of the easiest methods of determin-
ing the memory that should be migrated each round because
of the FreeBSD virtual memory subsystem implementation.
Using the CoW mechanism, the only pages that should be
migrated are the ones that reside in the shadow object. Even
if this method cannot be used in bhyve due to its dual
memory view, it gave us a clearer picture of the virtual
memory subsystem functionality and we developed another
memory modification detection mechanism to implement the
live migration feature for bhyve.

V. LIVE MEMORY MIGRATION USING A DIRTY-BIT

APPROACH

As stated in Section IV, the memory migration is one of the
most challenging parts in a live migration feature. In Section
IV we presented a memory modification detection mechanism
that uses with virtual memory objects.

Even though the virtual memory objects that represent the
guest memory are the highest entities in the virtual machine
memory hierarchy (as presented in Fig. 1) that are common for
both the guest (i.e., as seen by the virtual machine’s vmspace
entity) and the host (i.e., as seen by the bhyve user space utility
tool’s vmspace entity), there are other constraints that do not
allow the use of virtual memory objects to determine memory
differences. For instance, one of the constraints is the fact that
a vm_object entity is marked as CoW by setting some flags
in a memory layout enitity that is not shared between host and
guest because of their separate memory views. Thus, we will
present a solution that uses another entity shared between host
and guest: the struct vm_page entities.

Each struct vm_page contains a dirty flag field that
indicates if the page has been modified and if so, the changes
should be written on the disk. This flag is updated from time
to time based on the modified bit of the physical page by
inspecting the A/D - access/dirty - bits. Even though this
flag could be used for determining the pages that should be
migrated, we cannot interfere with this flag since the virtual
memory system relies on it to perform some virtual memory

subsystem actions such as the memory laundering process
[11], and modifying its behavior would imply some undesired
operating system behavior.

Instead of using the dirty flag, the proposed approach uses
a custom dirty bit used only by the bhyve hypervisor. The
custom dirty bit, named virtual-machine-dirty bit, is set
each time the dirty flag is set, but unset only by the bhyve
hypervisor.

1 VM OBJ = g e t c u r r e n t m e m o b j ( ) ;
2 c l e a r v m m d i r t y b i t f o r p g i n (VM OBJ ) ;
3 w a i t f o r r o u n d t o f i n i s h ( ) ;
4 pg = g e t p g w i t h v m m d i r t y b i t (VM OBJ ) ;

Listing 4. Finding a guest’s dirty pages using dirty bit

The pseudo-code snippet in Listing 4 presents a mechanism
that can be used to determine memory pages changed between
two moments in time. Firstly, each page from the memory
object should have the virtual-machine-dirty bit clean (to
eliminate false-positive cases). The memory differences can
be determined by inspecting the virtual memory object pages
that have the virtual-machine-dirty bit set.

VI. ALGORITHM

In order to implement a live migration feature for bhyve,
we use the approach presented in Section V for migrating
the memory and the state save and restore mechanism im-
plemented for bhyve [2] that was presented in the Section
III-A. The connection mechanism between the source host
and the destination host is the socket solution also used by
the warm migration feature for bhyve [12] shown in Section
III-B. The live migration algorithm is similar to the warm
migration algorithm, the major differences are related only to
the memory migration.

1 c o n n e c t ( s r c , d s t ) ;
2 c h e c k c o m p a t i b i l i t y ( s r c , d s t ) ;
3 l i v e m i g r a t i o n s e n d m e m o r y t o ( d s t ) ;
4 s n a p s h o t a n d s e n d s t a t e ( ) ;
5 des t roy vm ( )

Listing 5. Live Migration Algorithm - Source host method

1 c o n n e c t ( s r c , d s t ) ;
2 c h e c k c o m p a t i b i l i t y ( s r c , d s t ) ;
3 l i v e m i g r a t i o n r e c v m e m o r y f r o m ( s r c ) ;
4 r e c v a n d r e s u m e s t a t e ( ) ;
5 s p i n o f v c p u s ( ) ;

Listing 6. Live Migration Algorithm - Destination host method

The pseudo-code snippets from Listing 5 and from Listing
6 present the functions that run on the source host and on
the destination host in order to migrate a guest. After the
connection between the source and the destination hosts is
done, there is a check to determine whether the two are
compatible for migration (e.g., same CPU vendor and model,
same guest memory size, same virtual memory page size).
After that, the memory is migrated in rounds. In the last step,
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the guest’s remaining dirty memory is sent to the destination,
and the guest’s CPU’s and devices’s state is being snapshot
using the state save and restore feature. The virtual machine’s
state is restored at the destination. The guest is stopped on the
source host before the last step.

1 l i v e m i g r a t i o n s e n d :
2 f o r i =1 :N
3 i f i == 0
4 / / F i r s t Round
5 m a r k a l l m e m o r y d i r t y ( ) ;
6 e n d i f
7 i f i == N
8 / / L a s t Round
9 s t o p (vm ) ;

10 e n d i f
11 pages = g e t d i r t y p a g e s ( ) ;
12 send ( pages ) ;
13 end f o r
14
15 send ( pages ) :
16 f o r each page : pages
17 get from memory ( page ) ;
18 c l e a r d i r t y b i t ( page ) ;
19 s e n d t o d e s t ( page ) ;
20 end f o r

Listing 7. Live Memory Migration Algorithm - Send Memory

1 l i v e m i g r a t i o n r e c v :
2 w h i l e r e c v f r o m s r c ( page )
3 u p d a t e ( page ) ;
4 end w h i l e

Listing 8. Live Memory Migration Algorithm - Receive Memory

In Listing 7 the algorithm used for sending the guest
memory in rounds to the destination is presented. In the first
migration round, all guest pages should be migrated so each
page is artificially set as dirty by setting the virtual-machine-
dirty bit. In the next rounds, the memory differences are
determined by iterating through all of the guest pages and
sending them one by one to the destination. When copying
a page from the guest memory, we clear the virtual-machine-
dirty bit. By clearing the virtual-machine-dirty bit for each
migrated page, we prepare the guest for the next round. In
the last round, the virtual machine should be stopped and the
remaining memory migrated. Listing 8 shows the algorithm
used by the destination host. It receives pages one by one
and updates the guest memory that will be started after the
migration process completes.

VII. CURRENT STATUS IN BHYVE AND FUTURE WORK

The algorithm presented in Section VI is implemented in
bhyve [13] and the project is still under development. To start
a migration procedure, the process is similar to the warm
migration algorithm. As seen in Listing 9, in terms of usage,
the only difference between warm and live migration is related
to the bhyvectl command that starts migrating the guest:

instead of migrate=dst_ip,port the migrate-live
option is used.

# S t a r t s o u r c e g u e s t
roo t@src# bhyve <b h y v e o p t i o n s> vmsrc

# S t a r t d e s t i n a t i o n g u e s t
# and w a i t f o r m i g r a t i o n
roo t@ds t# bhyve <b h y v e o p t i o n s> \

−R s r c i p , p o r t vmdst

# Migra te g u e s t
roo t@src# b h y v e c t l \

−−m i g r a t e− l i v e = d s t i p , p o r t \
−−vm=vmsrc

Listing 9. Live migrating a bhyve guest

In order to have the same connection framework for both
warm and live migration, we modified the algorithm so among
the initial messages related to specification checks, the type of
migration (warm or live) is sent to the destination. Based the
migration type, the destination determines the functions to be
called for memory migration.

The framework for live migration is implemented, the live
migration feature is not yet stable and there are currently some
limitations that should be considered next:

• the guest memory should be wired - since we added a
mechanism for retrieving pages from memory and the
first migration round is supposed to migrate all the pages,
all memory should be allocated, and the pages should not
be swapped out. Thus, we choose to live migrate only
wired guests.

• the guest memory size should be less than the lowmem
segment - we implemented the framework to work for
guests that have assigned a virtual memory object only
for lowmem segment.

• the migrated guest crashes in some of the test scenarios.
The debugging process is still ongoing and this behavior
may be caused by the emulated devices that run in
user-space threads, that will continue running even when
the guest’s virtual CPUs are locked, affecting or even
corrupting the guest’s state and disk.

VIII. CONCLUSION

In this paper, we presented two mechanism for determining
the memory differences between two memory rounds.

The first approach is based on the FreeBSD Copy-on-Write
mechanism. To identify the pages that should be migrated us-
ing shadow virtual memory objects. Even if the algorithm can
determine the modified pages between two memory migration
rounds, it cannot be implemented in bhyve due to the dual
memory view of the guest memory.

The second mechanism for detecting the modified pages is
based on a dirty bit approach. We use a bit, named virtual-
machine-dirty bit, that is managed only by the hypervisor.
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The dirty-bit approach is currently used for live migrating
the guest memory. Even if the framework is implemented, the
live migration feature is not yet stable and there are some
challenges and improvements that should be considered in the
future.
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Abstract
The container-based virtualization, that multiplexes and iso-
lates computing resource and name space which operating
system (OS) provides for each process group of application,
has been recently attracted. We focus on container migra-
tion among machines since it is one of the most important
technology for realizing load balancing and increasing avail-
ability in cloud computing, that is a major application of the
virtualization.

Although FreeBSD VPS has already implemented one
kind of migratable containers in FreeBSD, it is not enough
in terms of resource limitation, compared to Linux one. This
paper shows a novel implementation that how resource lim-
itation and isolation close to that of Linux can be realized
for FreeBSD containers. We also explain how processes,
which could have sessions of file open and network connec-
tion, running in a FreeBSD container can be checkpointed
and then they can be restored in another container. This im-
plementation bases on runC which is one of standard con-
tainer runtime and CRIU which is a major process migration
tool in Linux.

1 Introduction

The container-based virtualization, that multiplexes and iso-
lates computing resource and name space which operating
system (OS) provides for each process group of application,
has been recently attracted, such as Docker [2], LXC [3], and
FreeBSD Jail [1].

We focus on container migration since it is one of the
most important technology for realizing load balancing and
increasing availability in cloud computing, that is a major
application of the virtualization. Especially We claim that
implementing containers and its migration along the stan-
dard interfaces and protocols could promote interoperability
with recent containerizing services such as Docker and Ku-
bernetes. There have already presented some of study and
work related to container on FreeBSD. The Docker-FreeBSD
port [4] exists as a native port of the Docker v1 engine with
Jail and zfs, however, unfortunately it may have become a
fossile since it has not been updated since 2015. FreeBSD
VPS(Virtual Private System) [6] realizes migratable contain-
ers isolated by Jail. Unfortunately, the containers lacks of

limiting resources such as CPU and memory usage, and the
system has no compatible interfaces to cooperate with the
major containerizing services.

In this paper, we propose a novel implementation of con-
tainers which limit and isolate resources, close to that of
Linux, and container migration functionality with the em-
phasis on cooperating the defact-standard containerizing ser-
vices such as the latest Docker and Kubernetes. We have
ported two of the standard software components for con-
tainer system implementation in Linux, runC and CRIU [5,7]
(Checkpointing and Restoring in User-space), to FreeBSD:
The revised runC not only can isolate but also can limit re-
souces. The ported CRIU supports processes natively run-
ning on FreeBSD.

The following sections shows resouce limit on FreeBSD
realize in runC, then explains how running processes in a
container, which could have sessions of file open and net-
work connection, can be captured with the CRIU-defined
representation and then they restore on another OS with sus-
taining their sessions. Finally, we also show result of a pre-
liminary evaluation of the implementation.

2 Limiting Resource Usage in a FreeBSD
Container

Fortunately, an implementation of runC for FreeBSD has ex-
isted, which was developed by Hongjiang Zhang [8]. Espe-
cially it is ideal for our purpose that it has compatible with
Linux one on the configuration by config.json file. How-
ever, it has been only implemented the resource isolation,
not the reource limitation. So we has realized additional
functionality of the resource limitation in the FreeBSD runC
implemetation.

Corresponding with Linux namespace, FreeBSD jail can
be used to realize to isolate resources for each container.
Table 1 shows counterparts for functionalities of the re-
source isolation in Linux and FreeBSD. Althrough almost
all resources besides PID and User can be isolated also in
FreeBSD, jail does not permit to assign PID 1 to multiple
processes simultaneously in a system. And it is impossible
to isolate set of users and groups identification for each con-
tainer in FreeBSD. Note that jail requires to execute the jail
command at first, and then to spawn the target process as
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Table 1: Isolated resources by Linux namespace and
FreeBSD jail

Isolated
Linux FreeBSD

resource

IPC

namespace
jail

Mount
UTS
Network
cgroups
PID

jail (limited support)
User

Table 2: Counterparts of Linux’s resource controls in
FreeBSD

Linux cgroups Counterpart in FreeBSD

memory RCTL memoryuse

cpushare (N/A)

cpuquota RCTL pcpu (convert)

hugepage superpages (limited support)

devices devfs

cpuset cpuset

cpuperiod RCTL cputime

a child of the jail command process because it disallows to
control resources for other processes. The runC implemen-
tation in FreeBSD follows the flow.

The specification of the resource usage control in runC fol-
lows the OCI (Open Containers Initiative) standard, which
has been based on Linux cgroups’ functionalities. FreeBSD
provides similar functionalites for the resource usage control
via several frameworks such as jail, RACCT/RCTL and so
on. Table.2 shows some of resources, which are especially
supported in Kubernetes, and control framework for each re-
source in Linux and FreeBSD. We have replacing almost all
implementation of the resource usage control based on Linux
cgroup in runC with the FreeBSD counterparts. Unfortu-
nately, some of limitations remain in our runC implementa-
tion; cpushare and hugepage unsupported.

By contrast, FreeBSD RCTL allows to specify an action
when amount of resource usage reaches the limit although
Linux cgroups always exercises ’deny’. Our FreeBSD runC
aligns the behavior to Linux one.

To pass a value of cpuperiod in Linux cgroups into
cputime in FreeBSD RCTL, it must require to convert the
unit with Eq.(1).

cputime =
cpuperiod
1000000

(1)

Also Eq.(2) shows a conversion from cpuquota of Linux
cgroups to pcpu of FreeBSD RCTL for specifying rate of
CPU usage.

pcpu =
cpuquota
cpuperiod

×100 (2)

Linux cgroups uses major and minor numbers to identify
devices, however, name must be used to specify devices in
FreeBSD. Unfortunately, a device could be assigned with
different numbers in Linux and FreeBSD althrough it has the
same name. We added a conversion of identification between
device numbers and names only for some of special device;
null and zero devices, tty, urandom, random, console, pts,
and so on.

3 Checkpoinging and Restoring a FreeBSD
container in User-space

CRIU is enabled to migrate processes by getting and restor-
ing the process state. Our target process is Linux ELF on
FreeBSD running by Linux emulation (Linuxulator). The
process state is cpu register and memory basically. In addi-
tion, there are opened file state, network state and etc.. In this
paper, we subscribe basic process migration, opened files mi-
gration and network state.

3.1 Migrating a Process
Normally, the process migration requires register informa-
tion and memory. The memory data is the same presentation
if a process is running on the same architecture. Also, most
recent OSes allocate memory to enhance security with ad-
dress space layout randomization (ASLR). On an OS with
ASLR enabled, memory is allocated to process randomly so
memory layout is different always. Although FreeBSD does
not yet implement ASLR, we will make it possible to change
the memory layout corresponding to ASLR. We reallocate
memory layout to convert memory layout.

The register information can be gotten and set by the
ptrace system call. Note that the set of segment registers
use as it is. Also, the memory can be gotten by the read
system call from mem file of procfs, set by the write system
call from memory file of procfs. Before memory data is set,
memory layout is reallocated with the mmap system call and
the unmmap system call.

For process state restoration, the process is set traceme
option of ptrace system call, run with execvp system call.
The important thing for Linuxulator is that you need to set
register information and memory after the first instruction of
the main function is executed.

3.2 Migrating State of Opened Files
We get and restore the opened file state. The opened file state
include file path, file descriptor number, file offset, file mode,
and file flags. On Linux, we can get the opened file state from
fdinfo directory of procfs. However, FreeBSD doesn’t have
fdinfo directory. We can get only the process’s file informa-
tion via fd directory of devfs. Therefore, we adopt libprocstat
library to get another process’s opened file state by __sysctl
system call.
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time it takes to start and restore container with runC 50 times.
The target process of this test is opened file but don’t have
TCP connection. The result shows in Fig.5. The horizontal
line shows time taken. The time of "STANDARD" is taken
start container with runC which no resource limitation func-
tion and migration function. The time of "START" and "RE-
STORE" is taken start and restore with runC which have re-
source limitation function and migration function. The "cre-
ate", "start", "restore" shows took to create container, start
target process, restore target process. In the case the "RE-
STORE", the "start" presents the time to start CRIU.

In the starting, creating container time increase 1.46 ms
than the normal starting, this is 1.23% of total time of the
normal starting. In the restoring, creating container time in-
crease 2.29 ms than the normal starting, this is 1.93% of total
time of the normal starting. In addition, the standard devia-
tion of the time until the target process starts execution is
2.62 ms in the case of the resource limiting function, 3.43 ms
in the case of the resource limiting function and the container
restoring function, that is, The overhead is smaller than that
of the shake, and it can be said that it can be extended with
small overhead.

5 Conclusion

We proposed how resources consumed by processes running
in a container can be limited with the runC runtime. The re-
vised runC uses the RCTL command to set a limit on mem-
ory and cpu usage for each container. Some parameters of
cpu limit specified in runC config should be converted since
they have been defined among the specification of Linux
cgroups.

We also showed how state of a process running on
FreeBSD can be checkpointed and restored from user-space
with the CRIU tool. The ptrace syscall in FreeBSD can be
used enough to read and write values of cpu registers for
each process. Content of process memory can be dumped
and restored through the procfs mem entry. In FreeBSD,
state of files opened by the target process can be captured
from the devfs fd entry. Then restoring the file state can be
realized by injecting code, which opens the files and invokes
the lseek syscall to restore file offset of the each file, into the
destination process. In order to dump and restore TCP con-
nections held by a migrating process, the current FreeBSD
kernel must be modified to allow to access the mbuf buffer
and the tcpcb structure data from user-space, moreover, ad-
just the window size at the restore.

The remaining issue is to support dynamically changing
setting of resouce limit and isolation. In Linux, CRIU can
capture and restore the current cgroup setting for the target
container. In contrast, in our current implementation, runC
creates a new destination container with the config file of the
source container, instead of capturing state of resource limit
and isolation.

Furthermore we would like to realize container migration
between FreeBSD and Linux with cooperating the Kuber-
netes container orchestration.
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Abstract—

Keeping track of time is an invaluable resource in modern
software systems. The vast majority of existing CPUs posses
various clocks and timers in order to accommodate time related
mechanisms required by software. These same needs apply to
virtualized environments, where the guest operating system uses
time based events. To this end, a virtualized timer is required.
This research project describes implementing such a timer in
FreeBSD for the ARMv7 architecture.

Index Terms—FreeBSD, bhyve, hypervisor, ARMv7, GIC, vGIC,
interrupts, Cubieboard2, Allwinner A20

I. INTRODUCTION

In the current stage, a guest running under the ARM FreeBSD
hypervisor (bhyve-arm) isn’t able to boot due to lack of a
virtual timer implementation and issues with VFP (vector
floating point) and WFI instruction. This paper will tackle
mainly the timer virtualization and also the remaining issues
to boot a guest.

Timed events are a core element of many software systems.
Their utility ranges from pre-empting processes while in kernel
space to scheduling events in high level programming in user
space. It is clear that these types of functionality are also
desirable when running software in a virtualized environment.

The need for keeping time has brought about the introduction
of new timer hardware, such as the Programmable Interval
Timer(PIT), the Real Time Clock(RTC), the Advanced Con-
figuration and Power Interface(ACPI) and the High Precision
Event Timer(HPET), each with their own utility.

The above mentioned as well as most other hardware timers
have the same basic functionality, as described by Figure 1.
An oscillator produces a precise frequency signal. Each cycle
of the oscillator updates the counter. When reaching a specific
value, it generates an output signal. Usually, this signal is a
interrupt that lets the CPU know that some amount of time has
passed. Depending on the specific type of timer, there may be
additional components.[9]

In the next sections, the following topics are discussed: sec-
tion two describes the state of the art - how other systems
virtualize timers, section three goes into detail concerning the
implementation, and the final section concludes with results
and plans for further development.

Figure 1. Timer functionality

II. STATE OF THE ART

Timer virtualization depends heavily on the underlying ar-
chitecture. Some hardware platforms have virtualization ex-
tensions meant to facilitate guest interaction with hardware
features as the timer. Other platforms lack such support and,
in this case, the hardware device must be emulated entirely.

A. Platforms without Timer Virtualization Extension

Platforms such as the widely used x86 have no support
for timer virtualization. This means that the virtualization
infrastructure must emulate all access to the timer, as well
as the all interrupts produced by it. Various techniques can be
used to achieve this, as follows.

1) VMware: VMware uses proprietary technology, allowing
the guest operating system to fall behind and catch up as
necessary, without losing functionality. The time which is
visible to guest systems is called apparent time. An in-depth
description of the functioning of each of the virtual timers
present in VMware can be found in the following VMware
paper.[9]

2) Xen: Xen approaches this issue differently. It uses paravir-
tualization - the guest is aware that it is functioning inside
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a virtualized environment. The guest kernel is modified to
contain a Clock Event Device which schedules events trough
the use of hypercalls. The resulting interrupt will be caught
in the hypervisor and delivered to the appropriate virtual
machine.[3]

3) Linux KVM: KVM supports both fully virtualized and
paravirtualized virtual timers. The fully emulated virtual timer
uses high resolution timers in the Linux kernel to keep track
of guest timer events. When a timer is fired inside KVM, it is
flagged that timers have to be taken into consideration upon
entering the guest.

As an alternative, KVM also provides a paravirtualized kvm-
clock which may be used as a clocksource by guest operating
systems.[7]

4) bhyve: bhyve, the FreeBSD hypervisor, supports fully
emulated timers for platforms that have no hardware support
for virtual timers. Similar to KVM, the bhyve implementation
uses the existing high performance event timers from kernel
space to handle guest timer events.

B. ARMv7

ARMv7 offers hardware support for virtual timers, thus ren-
dering both the performance penalty on the guest and the
amount of work required inside the hypervisor minimal. The
guest is allowed to interact directly with the hardware, with
no intervention from the hypervisor. Still, the virtualization in-
frastructure must perform certain operations to ensure correct
functionality of the guest.

KVM has a working implementation of virtual timers for
ARM. This implementation was used as a reference when
implementing the FreeBSD virtual timer.[6]

III. IMPLEMENTATION

Before discussing the actual implementation, the architecture
of ARMv7 timer is presented and, also, a very high level
overview of the Generic Interrupt Controller is made. These
are necessary in order to understand the implementation.
Additionally, a summary of encountered issues is made in the
ending of this section.

A. ARMv7 Generic Timer Architecture

The Generic Timer present on the ARMv7 platform is a
standardized timer which can be used as a system clock. Aside
from the usual counter, which in this case is referred to as
physical counter, the ARM Generic Timer may also contains
a virtual counter, which can be used by virtual machines for
time-keeping purposes. The physical counter is at least 56
bits wide and updates at a constant frequency in the range
1-50MHz. The virtual counter holds the value of the physical
counter minus a 64-bit offset.

An implementation of the Generic Timer with Virtualization
Extension provides four timers per CPU[5]:

• Non-secure PL1 physical timer
• Secure PL1 physical timer
• Non-secure PL2 physical timer
• Virtual timer

Each of the above provides an interrupt signal. Additionally,
each has a set of three registers: a CompareValue register -
which is a 64-bit unsigned upcounter, a TimerValue register
- which is a 32-bit signed downcounter, and a 32-bit Control
register.[5]

B. Virtual Generic Interrupt Controller

ARMv7 platforms use a Generic Interrupt Controller in order
to manage interrupts. The GIC keeps track of which interrupts
are enabled, prioritizes incoming interrupts and delivers them
to the appropriate CPU.[4] Since there is no hardware support
for a virtual GIC, it must be emulated by the hypervisor. This
means that any access to the GIC from within the guest, as
well as any interrupt that should be delivered to the guest must
pass through the emulated controller, also called vGIC.

C. Virtual Timer Implementation

Before describing the implementation, the table below de-
scribes the registers used.[5]

Name Description

CNTV CTL Virtual Timer Control register. Used by
the guest to interact with the
timer hardware

CNTV CVAL Virtual Timer CompareValue register

CNTHCTL Controls access to the physical registers.
In particular, the PL1PCTEN
and PL1PCEN are used to disable
access to the physical timer registers

CNTVOFF Virtual Offset register - specifies value to be
subtracted from physical counter in order
to obtain virtual counter

Figure 2 constitutes an overview of the workflow.

The workflow of the virtualization process is as follows:

1) At guest initialization (state 0), the CNTVOFF register is
initialized with the current value of the physical timer,
rendering the virtual counter 0 for the newly created
virtual machine

2) Before entering the guest (transition from state 1 to state
2), the hypervisor internal state for the virtual timer is
checked in order to determine whether any interrupts
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Figure 2. Virtual Timer Workflow

should have been triggered by the timer and need to be
injected by the vGIC

3) Upon entering the guest (state 2), the hypervisor en-
ables the virtual timer if necessary, disables access to
the physical timer, and restores the CNTVOFF register
for the current virtual machine, as well as restoring
CNTV CVAL and CNTV CTL

4) While running, the guest accesses the virtual timer
with no intervention from the hypervisor (state 3); any
interrupts triggered here are sent to the vGIC, which will
inject them accordingly

5) When exiting the guest, the CNTV CVAL and CNTV -
CTL registers are saved (state 4) and the hypervisor
internal state is updated (transition from state 4 to state
1

6) The host continues to use the physical timer until the
guest is run again, when the process resumes at step 2

Notice that only the CompareValue register is saved. This is
because both read and write operations on the TimerValue reg-
ister are translated into reads and writes on the CompareValue.

The implementation of the aforementioned flow is relatively
straight forward. The internal structure for a virtual machine
is used to memorize whether the virtual timer is enabled in
the respective guest and to store the value of CNTVOFF.
Similarly, the values for CNTV CVAL and CNTV CTL are
stored within a per-cpu structure.

One noteworthy aspect is determining whether an interrupt
needs to be injected upon re-entering a guest. When syncing
the internal bhyve state with the hardware state, it is first
checked whether the counter has reached the CompareValue
already. If so, the interrupt is injected on the next guest entry.
Otherwise, the remaining number of cycles is calculated and a
callout[1] event is scheduled. If the callout is executed before
running the virtual machine again, the interrupt is injected. In
the case where the guest is executed again before the callout,
the latter is simply cancelled.

D. Encounterd Issues

One major issue encountered was caused by desynchronising
a number of assembly symbols from the C code. The saving
and restoring of the timer registers is done directly in assembly
code, in which the respective symbols are used to calculate the
memory locations of various fields from the hypervisor internal
structures. The incorrect offsets used in these calculations
corrupted other internal fields and eventually caused the virtual
machine to crash.

Another blocking issue, which at the time of writing this paper
has not yet been solved, concerns the vGIC. Although the
interrupt injection flow is triggered and executes correctly,
the guest does not receive the interrupt. Most likely, not all
necessary guest registers are updated.

E. Vector Floating Point

Another kernel subsystem which needs to be initialized as part
of the boot process is the Vector Floating Point (VFP) module.

Vector Floating Point is a coprocessor which supports arith-
metic operations on floating point numbers. It has a set of
control registers, as well as a bank of registers which are used
to store operands.

When changing worlds between host and guest, the state
of this coprocessor needs to be saved. However, due to the
limited use of the VFP architecture, it can be assumed that
saving/restoring its state is not required at every entry/exit.
Instead, the trapping mechanism is once again used. When
an access to the floating point coprocessor occurs, the current
state is saved and the saved state for the guest is loaded. When
returning from the guest, the reverse operation is performed.

F. WFI Handler

At the very end of the boot process, FreeBSD executes a wait
for interrupt (WFI) instruction. This blocks the execution until
an interrupt is received by the CPU. Normally, this happens
very quickly due to the timer interrupt arriving.

On the virtualized system, this instruction requires special
handling. The simple method is to ignore the instruction and
continue execution. However, taking into account that both
the virtual interrupt controller and virtual timer were already
implemented, there was no reason to choose this option.

Therefore, the hardware behaviour was mimicked as closely
as possible: the virtual cpu was set to sleep and wake up
periodically in order to check whether any new interrupts had
arrived. While the virtual cpu is asleep, the hypervisor yields
control of the cpu so that other processes may execute[2].
Upon receiving an interrupt, the virtual cpu resumes normal
execution.
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IV. RESULTS

Timed events are a core element of many software systems.
Their utility ranges from preempting processes while in kernel
space to scheduling events in high level programming in user
space. It is clear that these types of functionality are also
desirable when running software in a virtualized environment.

Through the virtualization of the ARM Generic Timer de-
scribed in the previous section, the guest operating system
is able to achieve time-keeping and scheduling functionality
close to what a system running directly on the underlying
hardware.

Therefore, a key part of the operating system has been
implemented with behavior which closely mimics that of the
physical component.

The final result is to boot a minimal FreeBSD guest. Below is
the output for each of the steps of running a virtual machine.

First, the kernel module needs to be loaded.

Listing 1. Loading the vmm module

# kldload boot/kernel/vmm.ko
vgic0: <Virtual Generic Interrupt

Controller> on gic0
vgic0: Cannot setup Maintenance Interrupt

. Disabling Hyp-Mode... 0

There is still an unresolved issue regarding registering the
maintenance interrupt. The issue is circumvented by executing
the handler upon switching from guest to host context. Also,
until the issue is resolved, hyp-mode is not disabled by this
failure, as it would prevent the rest of the guest execution.

The second step is creating the virtual machine. This is done
using the bhyveload utility. At the end of this step, the
virtual machine is set up and the guest code is loaded into
memory.

Listing 2. Creating the virtual machine

# bhyveload -k kernel.bin test
lpae_vmmmap_set n: 4096 27904
lpae_vmmmap_set n: 4096 23808
lpae_vmmmap_set n: 4096 19712
lpae_vmmmap_set n: 4096 15616
lpae_vmmmap_set n: 4096 11520
lpae_vmmmap_set n: 4096 7424
lpae_vmmmap_set n: 4096 3328
lpae_vmmmap_set n: 4096 4096

Finally, the bhyve utility is used to commence the execution
of the guest.

Listing 3. Booting the virtual machine
# bhyve -b test
initarm: console initialized
arg1 kmdp = 0xc170fbd0
boothowto = 0x00000000
dtbp = 0xc1654568
lastaddr1: 0xc1734000

loader passed (static) kenv:
no env, null ptr

KDB: debugger backends: ddb
KDB: current backend: ddb
Copyright (c) 1992-2017 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989,

1991, 1992, 1993, 1994
The Regents of the University of California.

All rights reserved.
FreeBSD is a registered trademark of The FreeBSD

Foundation.
FreeBSD 12.0-CURRENT #0 52c583799(projects/bhyvearm)

-dirty: Fri Jul 14 20:23:04 EEST 2017
root@bsd:/usr/obj/arm.armv6/root/git-bhyvearm/

sys/FVP_VE_CORTEX_A15x1_GUEST arm
FreeBSD clang version 4.0.0 (tags/RELEASE_400/final

297347) (based on LLVM 4.0.0)
WARNING: WITNESS option enabled, expect reduced

performance.
WARNING: DIAGNOSTIC option enabled, expect reduced

performance.
CPU: ARM Cortex-A15 r2p0 (ECO: 0x00010000)
CPU Features:

Multiprocessing, Thumb2, Security, Virtualization,
Generic Timer, VMSAv7,

PXN, LPAE, Coherent Walk
Optional instructions:

SDIV/UDIV, UMULL, SMULL, SIMD(ext)
LoUU:2 LoC:3 LoUIS:2
Cache level 1:
32KB/64B 2-way data cache WB Read-Alloc Write-Alloc
32KB/64B 2-way instruction cache Read-Alloc

Cache level 2:
512KB/64B 16-way unified cache WB Read-Alloc Write-

Alloc
real memory = 134217728 (128 MB)
avail memory = 101703680 (96 MB)
arc4random: no preloaded entropy cache
random: entropy device external interface
ofwbus0: <Open Firmware Device Tree>
gic0: <ARM Generic Interrupt Controller> mem 0

x2c001000-0x2c001fff,0x2c002000-0x2c003fff on
ofwbus0

gic0: Cannot find Virtual Interface Control
Registers. Disabling Hyp-Mode...

gic0: pn 0xe8, arch 0x0, rev 0xe, implementer 0x800
irqs 128

intr_pic_register(): PIC 0xc2207100 registered for
gic0 <dev 0xc2633b80, xref 1>

intr_pic_claim_root(): irq root set to gic0
generic_timer0: <ARMv7 Generic Timer> irq 0,1,2,3 on

ofwbus0
Timecounter "ARM MPCore Timecounter" frequency

24000000 Hz quality 1000
Event timer "ARM MPCore Eventtimer" frequency

24000000 Hz quality 1000
cpulist0: <Open Firmware CPU Group> on ofwbus0
cpu0: <Open Firmware CPU> on cpulist0
cryptosoft0: <software crypto>
NULL mp in getnewvnode(9), tag crossmp
Timecounters tick every 1.000 msec
WARNING: WITNESS option enabled, expect reduced

performance.
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WARNING: DIAGNOSTIC option enabled, expect reduced
performance.

md0: Embedded image 18251776 bytes at 0xc0475f94
Trying to mount root from ufs:/dev/md0 []...
warning: no time-of-day clock registered, system

time will not be set accurately
Jul 14 17:00:51 init: login_getclass: unknown class

’daemon’
sh: cannot open /etc/rc: No such file or directory
Enter full pathname of shell or RETURN for /bin/sh:

random: unblocking device.

Expensive timeout(9) function: 0xc04294b0(0xc2641600
) 0.022796458 s

Cannot read termcap database;
using dumb terminal settings.
#
#

V. CONCLUSIONS AND FURTHER WORK

The project achieved its goal of completely booting a mini-
mal FreeBSD guest operating system running inside bhyve.
In order to reach this objective, a number of mechanisms
were implemented. These include: the virtual generic interrupt
controller, virtual timer, support for guest vector floating point
operations and other less notable changes. This paper tackled
especially the virtual timer.

A. Further Work

The bsd kernel contains multiple mechanisms for scheduling
events to be run at a future time. The current callout system
may be replaced with another mechanism if the latter offers
better performance or improves code maintainability.

There are a number of directions which can be pursued for
long term future development. These include: adding more
hypervisor components to support more virtualization features,
implementing support for symmetric multiprocessor (SMP)
enabled guests.

At the time of writing this paper, there is an ongoing pro-
cess with the FreeBSD community to integrate the changes
proposed by the current project into the upstream repository.
Alexandru Elisei started to create intermediarry patches to
split-out on arch-dependent/independent the current bhyve
code (libvmmapi, bhyve and vmm module). After this is done,
we can create review requests for the actual ARM code.
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Contemporary Unix, defined as the sum of 
open source BSD Unix projects, Illumos 
distributions and GNU/Linux distributions, 
plus the OpenZFS cross-platform file 
system, can attribute their success to the 
collaborative work of like-minded academic, 
commercial, and volunteer developers 
around the world. Governed by a mix of 
licenses, best practices, community norms, 
and personal passion, open source projects 
like modern Unix operating systems and 
OpenZFS largely lack centralized Quality 
Engineering institutions, deferring Quality 
Engineering and Quality Control 
responsibilities to participating developers 
and the end user. This arrangement promises 
the widest-possible array of regression and 
performance testing tools, loads, and 
procedures, at the expense of providing any 
guarantees, true to the disclaimers of the 
licenses under which these projects are 
distributed. This paper will examine how 
“parallel, multi-axis” testing, defined as 
testing multiple software versions, operating 
systems, “options”, compilers, and 
architectures, or axes, in parallel, will 
improve the identification and isolation of 
reliability and performance regressions. 
 
Identifying a Computing Axis 
 

Borrowing from the mathematical definition 
of an Axis, a fixed reference line for the 
measurement of coordinates, the 
quintessential computing axis is any given 
software versioning: it increments, in the 
case of SVN revisions, from zero to an 

architectural limit, where the highest number 
is always the latest revision and any point in 
the history is easily located and visited. 
Less-linear, yet equally traversable axes 
include multiple operating systems, their 
sequential versions, their userland and kernel 
build “options”, their supported computing 
architectures, and their supported 
hypervisors. Each of these axes is of 
equally-unique and identifiable value, 
enabling for their linear traversal and most 
importantly, testing in parallel. Parallel 
testing is facilitated by multiple identical 
hardware machines, unless of dissimilar 
hardware architecture, and multiple virtual 
machines executed in parallel. While 
identical hardware machines will provide the 
greatest consistency for performance testing, 
virtual machines are adequate for providing 
meaningful reliability testing of many 
computing resources. 
 
The Version Axis 
 

Of the testing Axes within the scope of this 
paper, the version axis is the most familiar. 
Incrementing software versioning is 
provided manually by the developer, or 
automatically by a version control system. 
The testing host operating system for this 
paper, FreeBSD, provides two distinct 
version identifiers: Named Releases and pre-
releases, i.e. 12.0-RELEASE and 12.0-RC1, 
and incrementing SVN Revisions, i.e. 
341707. These named and numeric 
identifiers allow for unambiguous revision 
identification, in contrast to the hash-based 
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“numbering” semantics used in some 
version control systems. Two distinct 
challenges exists however, to obtaining open 
source releases by named binary Release: 
incomplete historical release preservation 
and the rising popularity of distributing open 
source operating systems via content 
delivery networks (CDNs). The first of these 
challenges can largely be attributed to the 
unavailability of terabyte and larger-capacity 
storage devices until late in each operating 
system project’s history, allowing for 
centralized and distributed preservation of 
project history. The second of these 
challenges is simply the fact that content 
distribution networks are designed for the 
rapid distribution of the latest software 
releases, and not the preservation of historic 
releases. The result is a rapid expiration of 
available releases distributed via CDN than 
with traditional mirrors. Part of this paper’s 
work is a rebuilding of the FreeBSD release 
history in coordination with users around the 
World. 
 
The Operating System Axis 
 

The set of available operating systems is 
extensive, and multiplied by their individual 
version axes, overwhelming. The scope of 
this testing will be limited to operating 
systems that support the OpenZFS file 
system with a limited number of versions 
and a goal of all supported architectures. The 
result is a focus on FreeBSD, NetBSD, 
Illumos derivatives, primary (not derived) 
GNU/Linux distributions, macOS, and 
Microsoft Windows. 
 
The “Options” Axis 
 

Of the target operating systems within the 
scope of this work, FreeBSD is rich with 
userland and kernel “source build options” 

that determine what features are included or 
excluded from the compiled operating 
system. Similar to the situation with 
FreeBSD historic releases however, these 
options are often under-documented or non-
functional, resulting in the first test of this 
paper: ongoing Build Option Survey 
(/usr/src/tools/tools/build_option_survey/) 
runs, and the development of a “STUDENT” 
kernel configuration file that progressively 
introduces the options needed to build and 
eventually boot the FreeBSD kernel under 
the bhyve hypervisor. 
 
The Compilers Axis 
 

While FreeBSD employs the Clang compiler 
as its default, in-base compiler, the 
buildability of the operating system with the 
GCC and other compilers provides an 
important validation vector. FreeBSD 8.0 
could be built with the Portable C Compiler 
(pcc) and this testing will facilitate the 
institutional compilation of FreeBSD with 
alternative compilers and across the versions 
axis. By extension, FreeBSD’s promise, but 
not guarantee that each previous and future 
release of FreeBSD should be buildable 
under any given release, a forward/backward 
version axis traversal test should be trivial to 
conduct. 
 
The Architecture Axis 
 

FreeBSD offers the most OpenZFS-
supported architectures of any operating 
system. The relative low-cost of embedded 
and used non-Intel machines allow for this 
testing to include non-Intel architectures 
including ARM, ARM64, PowerPC, and 
Sparc64. GNU/Linux distributions are 
candidates for inclusion when their non-Intel 
support expands. 
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The POSIX Testing Environment 
 

Testing in parallel requires, by definition, a 
consistent testing environment in order to 
provide meaningful results. It is tempting to 
consider a cross-platform system orchestration 
solution such as Ansible or Puppet for the task 
of abstracting away platform-specific nuances, 
but these solutions provide high-overhead in 
exchange for limited domain-specific abilities, 
notably testing, rather than configuration. In 
consideration of the fact that the majority of the 
operating systems in the testing scope are near-
POSIX compliant, establishing a common 
POSIX testing environment is the most 
reasonable strategy to minimize platform-
specific nuances. In service of the goal of 
traversing the version axis on FreeBSD back to 
“historic” releases, a POSIX environment 
becomes a firm requirement for want of modern 
system orchestration tools on anything but the 
most recent operating system releases. In service 
of testing the Windows operating system, the 
Cygwin near-POSIX environment has proven 
the most flexible with the widest of array of third 
party open source packages for the Windows 
operating system. 
 

With the operating system-specific ABI 
requirements of a POSIX environment satisfied, 
a base set of utilities will provide near-identical 
functionality on all platforms in the scope of the 
testing. These utilities include at a minimum 
sh(1), ssh(1), time(1), date(1), 
touch(1), dd(1), truncate(1), 
mkdir(1), rmdir(1), sha512(1), 
zpool(1), zfs(8), and ztest(1). 
Supplementary utilities include gdate(1) for 
higher-resolution timing, and traditional 
benchmarking utilities like bechmarks/fio, 
bechmarks/bonnie++, and 
bechmarks/sysbench. Of these tools, disk 
partitioning utilities are the most platform-
dependent, but fortunately, any discrepancy in 
the execution times of partitioning tools across 
operating systems are not relevant to to the 
runtime testing of a file system. 
 
Finally, the bhyve Hypervisor and Jail 
containment system are essential to both 
preflighting tests prior to their deployment on 
dedicated hardware and the execution of some 
tests, such as those on historic versions of 
FreeBSD.

The ptime(1) Utility 
 

While the POSIX standard is well established, it 
makes makes no guarantees as to the machine 
parsability of utility output. This paper proposes 

the ptime(1) or precision time utility to 
provide enhanced, machine-parsable execution 
reporting to standard I/O shell interpreter 
pipelines:

 
NAME 
         ptime – Precision execution time utility 
 
SYNOPSIS 
         ptime [options] [command] 
 
DESCRIPTION 
 

ptime provides Unix epoch time and utility execution time in seconds, 
milliseconds and nanoseconds. It can also provide the time difference 
between two files based on their datestamps. 
 
OPTIONS 

-h  Display usage 
 -s  Display output in seconds (default without -s) 
 -m  Display output in milliseconds 
 -n  Display output in nanoseconds 
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 -f  First file (requires -l) 
 -l  Last file (requires -f) 
 -r  Override return value with output 
 
EXAMPLES 
 
 Output Unix Epoch time in seconds (-s implied) 
 

ptime 
1544000077   <equivalent to date +%s> 

 
 Output Unix Epoch time in milliseconds 
 

ptime -m 
154849734068255  <equivalent to (( gdate +%s%N ))/1000000> 

 
 Output Unix Epoch time in nanoseconds 
 

ptime -n 
1548497340682551000 <equivalent to gdate +%s%N> 

 
Output execution time of ‘sha256 -t’ time in nanoseconds 

 
ptime -n sha256 -t 
1548497340682551000 
 
Output the time difference between two files 
 
ptime -f /build/firstfile -l /build/lastfile 
123467 
 
Return Unix Epoch time in seconds 
 
ptime -r 
echo $? 
1544000077 

 
Additional tools include the bd(8) block 
device, and be(8) boot environment utilities 
for the management of block device partitioning 
and formatting, and OpenZFS boot 
environments respectively (Dexter, 
AsiaBSDCon 2018). 
  
Regression and Performance Testing 
 

Equipped with a cross-platform, near-POSIX 
test environment and support utilities, a baseline 
of tests can be performed along each axis. 
 
FreeBSD Version and Compiler Axis: Build 
forward and backward versions of FreeBSD on 
any given version with the built-in compiler and 
optional compilers. 
 

 
FreeBSD Option Axis: Extend the Build Option 
Survey framework or a new framework to kernel 
configuration file build options, identifying their 
interdependencies. 
 
bhyve Hypervisor vCPU Topology: Validate the 
January, 2019 bhyve vCPU topology 
improvements (reviews.freebsd.org/D18815 and 
related) that allow for up to 65 packages/sockets 
and 255 cores per package. Step through 
additional packages and cores one by one. This 
test is performed with a wrapper script that 
simply boots a virtual machine that is designed 
to shut down via /etc/rc.local.  This test 
should eventually traverse the operating system 
axis, ensuring that a representative set of non-
FreeBSD operating systems are validated with 
difference vCPU configurations. 
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OpenZFS Testing along the Operating System 
and Architecture Axes: Perform a myriad of tests 
in parallel across the operating system axis: 
repeated zpool creation and destruction, nested 
directory and file creation, high-count file 
touch(1)ing, cross-platform pool importation, 
identification of SMB and NFS performance 
cliffs based on the amount of data transferred, 
scripted fio(1) testing, and execution of the 
OpenZFS ztest(1) suite. With new OpenZFS 
platforms like Windows emerging, this testing 
has revealed that basic assumptions cannot be 
made, such as the success of the touch(1) 
utility. 
 

Conclusions 
 

The parallel, multi-axis testing approach for 
regressions and performance telemetry should 
provide new insights into reliability and 
performance issues that will be overlooked by 
domain-specific testing. This work is inspired by 
real-world OpenZFS on FreeBSD performance 
issues and combined with a version axis 
bisection strategy, should identify regressions at 
a faster pace than is possible with traditional 
testing methods. This testing also aims to 
accelerate the stability of new OpenZFS 
platforms including NetBSD and Windows. 
Finally, all of the tools used in this testing will 
be available on GitHub or equivalent. 
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Abstract—

In a world where cloud computing and cloud infrastruc-
tures have become a mainstay, virtualization technologies
have enabled a secure way to share resources with
different users. A snapshoting mechanism is of great use
in the area of virtualization, as it enables the backup
of virtual machines, or the creation of templates for
machine state replication. These virtual machines have
many different virtual devices connected to them that
need to have their state saved and restored for a system
to be truly useful; examples include block devices, USB
devices, or system time. For block I/O a virtual machine
may use different types of files depending on its use case.
This leads to a greater flexibility in terms of features;
for example, one can use a file type that enables saving
the state of the hard disk in order to be used later,
or as a backup. Hypervisors like VirtualBox, VMWare
and Hyper-V already have support for multiple disk file
formats. This paper will present a way to implement
support for the devices mentioned above, and fill readers
in on the procedure of saving device states.

I. INTRODUCTION

FreeBSD is an open source operating system that is
designed with the goal of being a successor to the
BSD operating system, and it is the most popular
OS in the BSD family. The reason in part is because
of its BSD licence, which allows companies to fork
the code and modify it without needing to push the
modifications upstream or make them public. This
makes it useful for companies like Netflix or Sony to
use it in their systems, because of security concerns or
financial reasons. Another reason for the popularity of
FreeBSD is the performance of the network stack, that
outperformes competing OS’s [1].

bhyve is the hypervisor that comes packed in with
FreeBSD. It is a type-2 hypervisor, so it runs over
the operating system. In corporate environments bhyve
is used by companies such as Joyent or iXsystems
because of its support for legacy operating systems
and relative small code base compared to other popular
hypervisors.

We have a special interest in the snapshoting feature,
because we wish to implement a fully featured check-
point system for the bhyve hypervisor, which comes

with the FreeBSD operating system. Our current imple-
mentation of the system will stop the execution of the
virtual machine. These features are being worked on in
an ongoing project at the University POLITEHNICA
of Bucharest. This is the only such feature in the
FreeBSD project [2].

This paper will present in depth the state of virtualiza-
tion in the bhyve virtualization, how the snapshot and
restore mechanism works, along with its stong points
and flaws, and I will present the improvements I have
implelementented in this mechanism, along with what
problems I have had along the way.

II. STATE OF THE ART

Virtualization is the process of running an operating
system over an already existing operating system. The
operating system that ”runs” directly on the hardware
is called a host OS, while the operating system being
run over the host is called a guest operating system.

The application that manages the interaction between
the host and guest operating systems is called a hyper-
visor. Depending on the implementation, and the level
of optimization, the hypervisor might have components
implemented at a kernel/driver level, or it can be fully
implemented in user space.

Hypervisors can be split in two major categories by
the connection they have with hardware:

• Type 1 hypervisors, which communicate with the
hardware directly. ex: Xen

• Type 2 hypervisors, which communicate with
the hardware through a fully fledged operating
system, like FreeBSD, GNU/Linux or Wwindows.
ex: Hyper-V, bhyve, KVM

Snapshoting is the act of saving the state of the virtual
machine while it is running. This is done in order to
make a backup, or a checkpoint, of the machine that
one could roll back the machine to. Another applica-
tion of this is migrating the virtual machines without
shutting them off. By saving their state, moving them
to another site, and starting them from the backup,
you can make it look, from the point of the virtual
machine, that it hasn’t been turned off. Hypervisors
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that implement these features are Hyper-V, VirtualBox,
VMWare, qemu, and others.

In bhyve the act of saving the virtual machine is made
of the following steps:

1) Stop virtual CPUs’ instruction execution
2) Iterate through all the kernel structures and save

their context to a file
3) Iterate through all the used devices and save their

contexts to a file
4) Dump the VM memory to a file

For restoring the virtual machine state the hypervisor
goes through the following actions:

1) Copy to memory the ”old” memory content
2) Copy device information from the restore file
3) Copy kernel structure information stored in re-

store file
4) Start virtual CPUs’ instruction execution

A. Block devices virtualization

A block device is a type of hardware device that is
used for I/O operations. Its special characteristic is
that reads and writes from it are made in discrete
chunks and random access to the address space of the
device. Because of the access to all the random access
property, they are used for large storage devices, such
as HDD’s or SSD’s.

In bhyve a virtualized block device is either a physical
block device that is passed through to the virtual
machine, or a file hosted on a physical block device.
When a VM needs to access the disk, a request is filled
and passed to the hypervisor. The hypervisor in turn
receives the request, puts it in a worker pool, and when
the time comes, it satisfies the request by calling a read
or a write system call.

Currently, the only virtual disk type, also called a disk
image, is the ”raw” type, which acts like a normal hard
drive.

As can be seen from above there is no step where
a copy of the virtual storage disk is made during the
checkpoint process. If you would want to use the saved
machine state for backup purposes, you would have
to make a copy of the whole disk image. This can
be a problem when you have a large scale service
where users backup their VMs like Amazon AWS, or
a deployment of Openstack. This makes the need for
more complex disk formats quite apparent.

III. RELATED WORK

There exist many implementations of block device
abstraction. These have all been implemented in var-
ious hypervisors in order to offer a more robust and
flexible interface to the users, and offer interoperability
between hypervisors.

A. QEMU

QEMU [4] (Quick Emulator) is a free and open source
emulator. Besides hardware virtualization, it can also
do hardware-accelerated virtualization to obtain less
overhead than full emulation thanks to the KVM
project.

It is the emulator that has provided us with the QEMU
Copy-On-Write, file format, which we have used in this
paper as a proof of concept for libvdsk. This format
has gone through many iterations over the years, and
the code that pertains to it is the most complex for this
format. It includes complex caching mechanisms that
have lead to it being one of the most popular image
formats.

B. Palacios

Palacios [5] is an open source VMM that is targeted
towards embedded computers. It is built in such a way
as to enable its integration into multiple OSs. As of the
time of writing, there have not been any new commits
in the Palacios main branch since 09 January 2017. It
has support for multiple disk file formats, such as RAM
disks, or netdisks and QCOW disks, so this present an
interest to us.

Palacious VMM’s block device abstraction layer works
in a similar way to libvdsk. It has a system where
a device registers a read, write, open and others,
and depending on the file format it calls the specific
implementation.

C. VMD

VMD [3] (Virtual Machine Daemon) is the OpenBSD
hypervisor. It has a similar approach to the Palacios
VMM of using a structure where you register callbacks
to read, write and close files. Our implementation for
QCOW2 operations were inspired by the implementa-
tion in this hypervisor.

IV. IMPLEMENTATION

The work in this paper is based on the libvdsk library,
first developed by Marcel Molenaar, and brought up
to date by Marcelo Araujo. It is used as an abstraction
layer that enables the use of block I/O requests without
being concerned about the format of the backing file
used by the virtual machine. At the time of the project’s
start libvdsk only had support for raw image files, files
that act exactly like a hard disk.

For each block I/O operation libvdsk implements a
function that will be called in the block I/O interface.
These functions cover common file operations like
open, close, read, write, trim, flush and probe. All of
these in turn use a callback to fulfill the operation
received. Each file format, be it a raw disk file or
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qcow2, has specific functions implemented for all the
previously mentioned operations.

Figure 1. Libvdsk workflow

Figure 1 conveys the whole path of an I/O request
through the block devices stack to reach to the libvdsk
implementation of a given function. When a request is
sent to a block device in the guest VM the emulator
implementation (virtio-block, ahci) fills a block I/O
request on behalf of the host, and it puts it in a worker
queue until it is picked up by a worker thread. After a
worker thread runs the job, it calls a generic function
in libvdsk which will call the implemented operation
for a particular disk file type.

We have been working on implementing these opera-
tions for the qcow2 image file format. This format was
initially developed for the qemu emulator, but it has
since gained a significant following because of features
like sparse image files, snapshoting, encryption, and
compression. As this is a widely used format with
different applications, we have found it the perfect can-
didate to test libvdsk’s capabilities on more complex
use cases, other than the raw format that was supported
natively in bhyve too.

There are multiple open source hypervisors that have
integrated support for qcow2. All of these have a
similar implementation to what we have put together,
since there aren’t many new ways in which one can
read data from a file that has a well defined structure.
A difference that one may observe is that the workflows
for different hyervisors are different. For example,
qemu implements a caching mechanism that vmd (the
OpenBSD hypervisor), and bhyve do not implement.

Since libvdsk was built, and abandoned, without im-
plicit support for more complex disk types, we needed

to add necessary code to it in order to make its design
more modular, like adding an additional pointer field
to the structure that holds data about the disk that
points to an area which has data specific to a disk
implementation. This allowed us to store an extra
structure related to the qcow2 internal data structures,
but it can be used to store structures for any format.

Figure 2. qcow addressing

The qcow2 image file uses a 2 layer addressing
scheme, similar to the multi-level page table memory
scheme, and it is also uses clusters which are effective
physical storage space (analogue to memory pages). A
physical address is made up of:

1) An index in the first table, named Layer 1 table
(L1), that stores the address of a Layer 2 table

2) An index in the second table, named Layer 2
table (L2), that stores the address of a cluster

3) An offset in the cluster retrieved from an L2 table

This addressing scheme can also be seen in Figure 2.
As can be observed in the figure, the cluster size is not
a fixed value, it can vary from file to file depending
on the configuration. Another detail is the fact that one
L2 table is exactly one cluster long, and an entry in it
is 8 bytes long.

The layered approach in qcow has de advantage of not
needing a large memory allocation when creating the
file. Further more, this scheme allows the existence
of a Copy On Write mechanism, which is used for
maintaining a backup of a disk, since all writes in a
backup file will be done on a cluster by cluster basis, so
these are the only storage areas that will be duplicated.

Using libvdsk we have implemented the open, probe,
read and write operations on the qcow2 image format,
with more support to be added in the near future, as this
project is of high priority for providing the save/restore
functionality with a file backup mechanism.

The read operation on qcow2 follows step by step
Figure 2 in order to retrieve the cluster where the
desired information is located. If the size being read is
more that the cluster size, we try to determine in which
part of the read operation the full cluster is located.

The write operation requires the ability to make new
clusters on demand if the operation tries to write in
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a space where the cluster is not allocated. This will
increase the footprint of the image file on the disk as
more and more clusters, and eventually L2 tables when
the existing one is filled up.

V. RESULTS

The results of the project so far are that we are able to
read and write from a disk image that is in the QCOW2
format. In order to test, we converted an existing disk
that had information on in to the QCOW format. After,
we tested the reads at first reading trying to read the
partition table of a disk. We did is by using the fdisk
tool. After he did this, we read from different areas
from the disk, and we checked the result with the
original disk file.

For testing writes, we first tried to write in the partition
table, because it is situated in the first sector, so it
would rule out offset problems. After we were able to
add partitions to the partition table, we checked them
using the fdisk tool. After this, we formatted the new
partition. We chose to format it at first with the ext2
file system, since it is a simple format that keeps its
metadata at the beginning of the disk, but it doesn’t
have complex mechanisms, such as journalizing. After
formatting the partition, we mounted it, created a file,
unmounted the partition, and remounted it, to check if
the file still had the written data.

As the project is still in development, the only features
that have been fully tested are the hooks that go into the
libvdsk. We tested this by appending printing functions
to the callbacks and checking whether something in
printed to the terminal.

Another feature working at the time of writing is the
probe function, which prints the header of the disk
image format, if it has one.

VI. CONCLUSION AND FURTHER WORK

Furthermore, by implementing qcow2 support in bhyve
using libvdsk, we aim to show a proof of concept for
the library, as it aims to provide a universal way of
working with and on virtual disk through an easily
extensible API. This will lead in turn to possibilities
for implementing varying features for working with
disk image files.

Going forward, we aim to implement support for Copy
on Write and disk snapshoting in our implementation
of qcow2 and integrate this with the checkpointing
mechanism outlined in this paper in order to allow for
efficient virtual machine backup. Adding to this, we
could also add a caching mechanism, similar to the
implementation integrated in qemu in order to offload
the overhead of translating virtual disk addresses to
offsets in the disk vile.

Another avenue worth exploring is implementing sup-
port for other virtual disk files, and comparing them to
the qcow2 implementation in bhyve.
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Porting Go to NetBSD/arm64

Maya Rashish

Abstract

Go makes the unusual choice of a custom toolchain and hand-
written assembly. The rationale behind some of those choices
is explained and techniques used for solving problems are
mentioned.

1 Introduction

Golang or Go1 is a statically typed, compiled, garbage-
collected language. It enables easy concurrency and cross-
compilation. The most popular implementation of Go is self-
hosted (written in Go), and is independent of libc. The choices
made by Go create difficulties for adapting the compiler for
new targets. This paper will discuss the adaptation of Go to
a NetBSD Aarch64 machines and the difficulties involved in
the process.

2 Difficulties

2.1 Custom tooling

In many languages today, the implementation can be de-
scribed as the following steps:

High-level code

Compiler

Assembler

Linker

Machine code glue code libc OS

Figure 1: Typical language overview.
Language-specific parts are in brown.

1https://golang.org/

High-level code

Compiler

Assembler

Linker

Machine code syscall module OS

Figure 2: Go top-level overview.
Go-specific parts are in brown.

Go has chosen to take a different approach. Due to limita-
tions to existing tools at the time, Go has chosen to incorporate
tools implemented by its authors for the Plan9 project2. These
include, unusually, a custom assembler with a special assem-
bly syntax3 and linker. Go doesn’t use any external toolchain
code.

This allows the Go code to support cross-compilation with-
out needing to adjust any external packages, but comes at the
cost of being another component that needs to be taught about
new architectures.

Since the port to NetBSD/arm64 was the third OS (after
Linux and Darwin), this didn’t require any additional changes
by the author.

2.2 CGo overhead

Stack The Go stack is not suitable for running arbitrary for-
eign C code, so another stack is used for foreign function
calls.

ABI Go’s internal function calls know not to trample certain
global state. It must be saved/restored on function calls
into foreign code.

Internal accounting Go manages scheduling of goroutines

2Plan9 operating system
3https://golang.org/doc/asm
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and a garbage-collector. These require timing informa-
tion to handle.

Go code communicates whether a function may block,
and foreign code doesn’t do this, so it has a special ac-
counting state. We must communicate this to the ac-
counting before switching to the foreign code.

3 Implementation

Custom code to call the operating system
Functions like "sleep for a few seconds" are very commonly

used, so as an optimization, it is preferable to use custom Go-
like code for them.

For this reason, Go had to be taught a lot of information
normally contained within libc, like how to open files, how to
exit. These interfaces are specific to the operating system, so
code specific to NetBSD had to be written.

The majority of the effort of porting Go to NetBSD/arm64
was spent on teaching Go about how to ask the operating
system to do certain things normally done in libc.

Other ports to arm64 exist, Linux and Darwin. The Lin-
ux/arm64 implementation was a source of inspiration, as was
the cost for NetBSD/amd64 systems. In NetBSD, libc con-
tains system call code and was inspected for comparison.

The Darwin implementation will call into system libraries,
as Darwin doesn’t offer backwards compatibility for code
using system calls directly.

3.1 ABI
Using system calls is typically a matter of passing arguments
in a previously agreed upon manner, and calling a special
"syscall" instructions which switches into the kernel.

Typical calling convention for Aarch64 functions4:

SP Stack pointer
r0..r7 Input and output registers

Most system calls within NetBSD follow the function call-

4AArch64 Procedure Call Standard

mmap (0, 0x8000 , 0x3 , 0x1002 , 0 xffffffff ,
0, 0) = 0 x7f7ff7ef7000
open ("/ etc/ld.so. conf ", 0, 0 x7f7ff7e12768 )
Err #2 ENOENT

Figure 3: Typical ktrace output

ing convention, and would use r0 for the first input argument,
r1 for the second, and so forth. Additional arguments are
passed on the stack.

However not all system calls followed this convention.
SYS_syscall (syscall number #0), which has the syscall num-
ber as the first argument, uses r17 for passing the syscall
number.

Similarly, linux chooses to use r8 for passing the syscall
number, instead of passing the paramter using the Aarch64
syscall instruction ("SVC") paramter.

3.2 Debugging
The porting effort consisted of writing around 500 lines of
assembly code, a very error-prone effort, prior to any testing.
Unsurprisingly, the first attempt to run any code didn’t work.

For the purpose of debugging, ktrace5 was used.
System call numbers appear in their names, and the argu-

ments are enclosed in parentheses, similar to C function calls.
Return values or errors are shown after the closing paren.

ktrace was an invaluable tools, as most of the mistakes were
within Go code.

4 Results

At the end, simple programs run. Additional work is done to
build the compiler natively. The code is available online and
is awaiting review by Go upstream. 6

5Running binaries prepended by the ktruss(1) command
6https://github.com/golang/go/pull/29398
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Another Path for Software Quality?
Automated Software Verification and OpenBSD
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genua GmbH

Ludwig-Maximilians-Universität München
mbuhl@moritzbuhl.de

Abstract
CPACHECKER is a platform for software-verification
created to be extensible by implementing an interface
of configurable program analysis. It comes with vari-
ous configurations for checking a program for correct-
ness or to produce a counterexample after falsification.
This paper displays the strengths and weaknesses of
CPACHECKER based on the key insights gained from
the Application of Software Verification to OpenBSD
Network Modules [1]. This is to provide a view on
the applicability of formal verification on the OpenBSD
source code with the goal of improving its quality.

1 Introduction
The OpenBSD project is proud to ensure a high qual-
ity standard. This is due to a combination of a strong
review policy, guiding development tools as well as ad-
ditional audits in the BSD community [2], performance
and regression tests1 [3], and other testing methods like
fuzzing [4]. Further promising approaches are applied
within the BSD community, e.g. kernel sanitizers [5].

However, a rather unproven way of ensuring software
quality – that stands in contrast with the usual approach
of simplicity in the OpenBSD project – is formal veri-
fication. The amount of effort associated with verifica-
tion and specification as well as the complexity of time
and space limitations usually outgrow the benefits of
formally proven source code.

Previous work [1] shows that in addition to the usual
weaknesses of automated verification, the OpenBSD
kernel causes more complications because of assump-
tions by the tooling based on a GNU/Linux exclu-
sive view on UNIX. E.g. the runtime environment

1http://bluhm.genua.de

model used during verification is Linux based and
CPACHECKER is officially only running on Linux. Fur-
ther problems emerge since the BSD kernels differ from
Linux in their internal implementations. Moreover, the
use of inlined assembler is unsupported and therefore
the extensive use of assembler adds more complica-
tions.

On the other hand, formal verification offers promis-
ing analyses for memory and concurrency safety, reach-
ability and termination checks and also overflow detec-
tion. Which means that many program defects can be
ruled out or counterexamples can be generated. And
as the Linux Driver Verification (LDV) project2 shows,
these methods can be applied successfully.

One tool that enables verification and falsification is
CPACHECKER. It uses a combined approach of static
code analysis and model checking by implementing an
interface for program analysis to test if a program satis-
fies a given specification.

2 CPAchecker

2.1 Configurable Program Analysis
CPACHECKER implements an interface for config-
urable program analysis (CPA) [6], [7]. A CPA con-
sists of abstract program states, a relation that connects
the abstract state to the program code, and two opera-
tions, one that decides on new abstract states, and an-
other one to decide when the analysis will terminate.
The program code is converted from the source code to
a control-flow graph (CFG) to apply a graph algorithm.

Each CPA has different trade-offs in accuracy and
supported features. It is possible to combine multiple
CPA and use them in combination on different parts of

2http://linuxtesting.org/ldv
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Figure 1: The workflow of CPACHECKER

the program, this is called partial verification. Exam-
ples for the various features of a program and how these
affect the tooling can be viewed online3.

Figure 1 shows the process of verifying a program:
first, its source code is converted to a CFA. Then a
graph algorithm runs a (possibly multiple) CPA on it
and checks if the program satisfies the given specifica-
tion. If multiple CPA are used it is possible to make
them interact with each other or to refine the analysis
based on previous results [8].

2.2 Setup and Usage
CPACHECKER4 uses the Java JVM and therefore is
mostly platform independent with exception to the
dynamic libraries that are not currently available on
OpenBSD. To set up CPACHECKER, a Java environ-
ment is needed and the sources need to be built with
Apache Ant. On OpenBSD adjusting the maximum
data size limit in the login.conf file is recommended,
especially when analyzing bigger C programs. A port
is currently not available.

Once set up, CPACHECKER requires a specifi-
cation or a configuration file to analyze a C pro-
gram: cpa.sh [-config CONFIG_FILE] [-spec
SPEC_FILE] SOURCE_FILES. A selection of configu-
rations is available in the config folder.

Source code requires preprocessing before it can be
analyzed. GCC and Clang provide an -E option to use
the C preprocessor on a source file, alternatively the
-preprocess switch of CPACHECKER can be set. To
preprocess the OpenBSD kernel code according to its
configuration, it is necessary to use the kernel build sys-
tem. The necessary modifications are available online5.

On OpenBSD the following properties either

3http://sv-comp.sosy-lab.org
4http://cpachecker.sosy-lab.org
5http://github.com/bluhm/preproc

I n l i n e a s s e m b l e r i g n o r e d , a n a l y s i s i s p r o b a b l y
unsound !

Assuming e x t e r n a l f u n c t i o n e r r t o be a pu re
f u n c t i o n .

F u n c t i o n p o i n t e r ∗(& p u t c ) wi th t y p e i n t (∗ ) (
i n t , FILE ∗ ) i s c a l l e d , b u t no p o s s i b l e
t a r g e t f u n c t i o n s were found .

Unrecogn ized C code . . .
Using unsound a p p r o x i m a t i o n o f i n t s w i th

unbounded i n t e g e r s and f l o a t s w i t h
r a t i o n a l s f o r e n c o d i n g program s e m a n t i c s .

Figure 2: Example error messages from CPACHECKER

need to be set in a configuration file or with the
-setprop flag, as other SMT solvers are not available:

solver.solver SMTInterpol
cpa.predicate.encodeBitvectorAs INTEGER
cpa.predicate.encodeFloatAs INTEGER

While using CPACHECKER, it is likely to run into
the warnings and errors mentioned in Fig. 2. Espe-
cially when working with kernel code, warnings will
occur due to inlined assembler. These places need
to be looked at individually and need to be worked
around. Other warnings require implementations of
known C functions because a mechanism for linking
files is missing. And other times either an analysis can-
not work with a specific C construct or the conversion
to a CFA was erroneous. The last warning mentioned
appears on OpenBSD because other SMT solvers are
not supported.

2.3 Working around Problems

To still receive a result from CPACHECKER, it is nec-
essary to work around these errors. This is mostly
achieved by adjusting the source code – which means
changing it to an extent that it is not easy to prove to
behave exactly the same. E.g. by replacing a call to a
function pointer with the actual function because func-
tion pointers are not always tracked. The LDV project
too has to work around the weaknesses and does so by
adding another compilation layer with an intermediate
language.

Application of Software Verification to OpenBSD
Network Modules [1] had the plan to refind previous er-
rata with the prospect of applying the same strategies in
the future to find new bugs. But it quickly became clear
that CPACHECKER is not practicable for this task as it
is not battle-tested on real source code. It is possible
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to refind errors like a double-free(3) after swapping
the memory management implementation, removing in-
line assembler, replacing calls to function-pointers, fix-
ing C syntax parsing in CPACHECKER and manually
merging compile units together.

3 Conclusion
Using CPACHECKER to easily find new bugs is cur-
rently not imaginable. It is possible to reproduce al-
ready known bugs in the kernel but as the kernel func-
tions used for resource management require individual
abstractions, this is associated with manual labor.

In addition to this, the bugs in CPACHECKER make
it uneasy to use on real programs. It tries to support
the ISO/IEC 9899:1999 (C99) standard and does so by
reprogramming the bugs, other compilers and parsers
already made. The manifold configurability is great for
developing new approaches but might cause problems
with usability when applying it on real programs, as
the barrier to entry is increased with the knowledge re-
quired on each CPA. The lack of use with real programs
is the main reason for this.

4 Future Work
Because of the mentioned problems, it is necessary to
use CPACHECKER on real userland programs. Starting
with small POSIX programs like true, yes or w before
considering to take a look kernel code might be a better
approach to fix CPACHECKER.

Especially since OpenBSD introduced a dynamic ap-
proach with pledge(2) that ensures that a system call
cannot be called again after a pledge, it would be inter-
esting to see if a CPA can find violations of a pledge
with a static approach.

Another complicated problem that accumulates a lot
of different possible states that is known to be tricky is
multiprocessing. Approaches in CPACHECKER exist to
verify POSIX thread programs. If this can be applied
successfully on userland programs, it might be inter-
esting to see, if a similar approach can be used on the
kernel.
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